19,760 research outputs found

    Pion Superfluidity and Meson Properties at Finite Isospin Density

    Full text link
    We investigate pion superfluidity and its effect on meson properties and equation of state at finite temperature and isospin and baryon densities in the frame of standard flavor SU(2) NJL model. In mean field approximation to quarks and random phase approximation to mesons, the critical isospin chemical potential for pion superfluidity is exactly the pion mass in the vacuum, and corresponding to the isospin symmetry spontaneous breaking, there is in the pion superfluidity phase a Goldstone mode which is the linear combination of the normal sigma and charged pion modes. We calculate numerically the gap equations for the chiral and pion condensates, the phase diagrams, the meson spectra, and the equation of state, and compare them with that obtained in other effective models. The competitions between pion superfluidity and color superconductivity at finite baryon density and between pion and kaon superfluidity at finite strangeness density in flavor SU(3) NJL model are briefly discussed.Comment: Updated version: (1)typos corrected; (2)an algebra error in Eq.(87) corrected; (3)Fig.(17) renewed according to Eq.(87). We thank Prof.Masayuki Matsuzaki for pointing out the error in Eq.(87

    Spin superfluidity and long-range transport in thin-film ferromagnets

    Full text link
    In ferromagnets, magnons may condense into a single quantum state. Analogous to superconductors, this quantum state may support transport without dissipation. Recent works suggest that longitudinal spin transport through a thin-film ferromagnet is an example of spin superfluidity. Although intriguing, this tantalizing picture ignores long-range dipole interactions; we demonstrate that such interactions dramatically affect spin transport. In single-film ferromagnets, "spin superfluidity" only exists at length scales (a few hundred nanometers in yttrium iron garnet) somewhat larger than the exchange length. Over longer distances, dipolar interactions destroy spin superfluidity. Nevertheless, we predict re-emergence of spin superfluidity in tri-layer ferromagnet--normal metal--ferromagnet films of 1μ\sim 1\, \mum in size. Such systems also exhibit other types of long-range spin transport in samples several micrometers in size.Comment: 5 pages, 3 figure

    Nuclear superfluidity for antimagnetic rotation in 105^{105}Cd and 106^{106}Cd

    Full text link
    The effect of nuclear superfluidity on antimagnetic rotation bands in 105^{105}Cd and 106^{106}Cd are investigated by the cranked shell model with the pairing correlations and the blocking effects treated by a particle-number conserving method. The experimental moments of inertia and the reduced B(E2)B(E2) transition values are excellently reproduced. The nuclear superfluidity is essential to reproduce the experimental moments of inertia. The two-shears-like mechanism for the antimagnetic rotation is investigated by examining the shears angle, i.e., the closing of the two proton hole angular momenta, and its sensitive dependence on the nuclear superfluidity is revealed.Comment: 14 pages, 4 figure
    corecore