21 research outputs found

    Bootstrap Multigrid for the Laplace-Beltrami Eigenvalue Problem

    Full text link
    This paper introduces bootstrap two-grid and multigrid finite element approximations to the Laplace-Beltrami (surface Laplacian) eigen-problem on a closed surface. The proposed multigrid method is suitable for recovering eigenvalues having large multiplicity, computing interior eigenvalues, and approximating the shifted indefinite eigen-problem. Convergence analysis is carried out for a simplified two-grid algorithm and numerical experiments are presented to illustrate the basic components and ideas behind the overall bootstrap multigrid approach

    A reduced conjugate gradient basis method for fractional diffusion

    Full text link
    This work is on a fast and accurate reduced basis method for solving discretized fractional elliptic partial differential equations (PDEs) of the form Asu=f\mathcal{A}^su=f by rational approximation. A direct computation of the action of such an approximation would require solving multiple (20∼\sim30) large-scale sparse linear systems. Our method constructs the reduced basis using the first few directions obtained from the preconditioned conjugate gradient method applied to one of the linear systems. As shown in the theory and experiments, only a small number of directions (5∼\sim10) are needed to approximately solve all large-scale systems on the reduced basis subspace. This reduces the computational cost dramatically because: (1) We only use one of the large-scale problems to construct the basis; and (2) all large-scale problems restricted to the subspace have much smaller sizes. We test our algorithms for fractional PDEs on a 3d Euclidean domain, a 2d surface, and random combinatorial graphs. We also use a novel approach to construct the rational approximation for the fractional power function by the orthogonal greedy algorithm (OGA)

    Finite Element Approximation of Eigenvalues and Eigenfunctions of the Laplace-Beltrami Operator

    Get PDF
    The surface finite element method is an important tool for discretizing and solving elliptic partial differential equations on surfaces. Recently the surface finite element method has been used for computing approximate eigenvalues and eigenfunctions of the Laplace-Beltrami operator, but no theoretical analysis exists to offer computational guidance. In this dissertation we develop approximations of the eigenvalues and eigenfunctions of the Laplace-Beltrami operator using the surface finite element method. We develop a priori estimates for the eigenvalues and eigenfunctions of the Laplace-Beltrami operator. We then use these a priori estimates to develop and analyze an optimal adaptive method for approximating eigenfunctions of the Laplace-Beltrami operator
    corecore