42,687 research outputs found
Inner product computation for sparse iterative solvers on\ud distributed supercomputer
Recent years have witnessed that iterative Krylov methods without re-designing are not suitable for distribute supercomputers because of intensive global communications. It is well accepted that re-engineering Krylov methods for prescribed computer architecture is necessary and important to achieve higher performance and scalability. The paper focuses on simple and practical ways to re-organize Krylov methods and improve their performance for current heterogeneous distributed supercomputers. In construct with most of current software development of Krylov methods which usually focuses on efficient matrix vector multiplications, the paper focuses on the way to compute inner products on supercomputers and explains why inner product computation on current heterogeneous distributed supercomputers is crucial for scalable Krylov methods. Communication complexity analysis shows that how the inner product computation can be the bottleneck of performance of (inner) product-type iterative solvers on distributed supercomputers due to global communications. Principles of reducing such global communications are discussed. The importance of minimizing communications is demonstrated by experiments using up to 900 processors. The experiments were carried on a Dawning 5000A, one of the fastest and earliest heterogeneous supercomputers in the world. Both the analysis and experiments indicates that inner product computation is very likely to be the most challenging kernel for inner product-based iterative solvers to achieve exascale
A review of High Performance Computing foundations for scientists
The increase of existing computational capabilities has made simulation
emerge as a third discipline of Science, lying midway between experimental and
purely theoretical branches [1, 2]. Simulation enables the evaluation of
quantities which otherwise would not be accessible, helps to improve
experiments and provides new insights on systems which are analysed [3-6].
Knowing the fundamentals of computation can be very useful for scientists, for
it can help them to improve the performance of their theoretical models and
simulations. This review includes some technical essentials that can be useful
to this end, and it is devised as a complement for researchers whose education
is focused on scientific issues and not on technological respects. In this
document we attempt to discuss the fundamentals of High Performance Computing
(HPC) [7] in a way which is easy to understand without much previous
background. We sketch the way standard computers and supercomputers work, as
well as discuss distributed computing and discuss essential aspects to take
into account when running scientific calculations in computers.Comment: 33 page
TensorFlow Doing HPC
TensorFlow is a popular emerging open-source programming framework supporting
the execution of distributed applications on heterogeneous hardware. While
TensorFlow has been initially designed for developing Machine Learning (ML)
applications, in fact TensorFlow aims at supporting the development of a much
broader range of application kinds that are outside the ML domain and can
possibly include HPC applications. However, very few experiments have been
conducted to evaluate TensorFlow performance when running HPC workloads on
supercomputers. This work addresses this lack by designing four traditional HPC
benchmark applications: STREAM, matrix-matrix multiply, Conjugate Gradient (CG)
solver and Fast Fourier Transform (FFT). We analyze their performance on two
supercomputers with accelerators and evaluate the potential of TensorFlow for
developing HPC applications. Our tests show that TensorFlow can fully take
advantage of high performance networks and accelerators on supercomputers.
Running our TensorFlow STREAM benchmark, we obtain over 50% of theoretical
communication bandwidth on our testing platform. We find an approximately 2x,
1.7x and 1.8x performance improvement when increasing the number of GPUs from
two to four in the matrix-matrix multiply, CG and FFT applications
respectively. All our performance results demonstrate that TensorFlow has high
potential of emerging also as HPC programming framework for heterogeneous
supercomputers.Comment: Accepted for publication at The Ninth International Workshop on
Accelerators and Hybrid Exascale Systems (AsHES'19
- …
