2,857 research outputs found

    A fast and accurate basis pursuit denoising algorithm with application to super-resolving tomographic SAR

    Get PDF
    L1L_1 regularization is used for finding sparse solutions to an underdetermined linear system. As sparse signals are widely expected in remote sensing, this type of regularization scheme and its extensions have been widely employed in many remote sensing problems, such as image fusion, target detection, image super-resolution, and others and have led to promising results. However, solving such sparse reconstruction problems is computationally expensive and has limitations in its practical use. In this paper, we proposed a novel efficient algorithm for solving the complex-valued L1L_1 regularized least squares problem. Taking the high-dimensional tomographic synthetic aperture radar (TomoSAR) as a practical example, we carried out extensive experiments, both with simulation data and real data, to demonstrate that the proposed approach can retain the accuracy of second order methods while dramatically speeding up the processing by one or two orders. Although we have chosen TomoSAR as the example, the proposed method can be generally applied to any spectral estimation problems.Comment: 11 pages, IEEE Transactions on Geoscience and Remote Sensin

    Non-convex optimization for 3D point source localization using a rotating point spread function

    Get PDF
    We consider the high-resolution imaging problem of 3D point source image recovery from 2D data using a method based on point spread function (PSF) engineering. The method involves a new technique, recently proposed by S.~Prasad, based on the use of a rotating PSF with a single lobe to obtain depth from defocus. The amount of rotation of the PSF encodes the depth position of the point source. Applications include high-resolution single molecule localization microscopy as well as the problem addressed in this paper on localization of space debris using a space-based telescope. The localization problem is discretized on a cubical lattice where the coordinates of nonzero entries represent the 3D locations and the values of these entries the fluxes of the point sources. Finding the locations and fluxes of the point sources is a large-scale sparse 3D inverse problem. A new nonconvex regularization method with a data-fitting term based on Kullback-Leibler (KL) divergence is proposed for 3D localization for the Poisson noise model. In addition, we propose a new scheme of estimation of the source fluxes from the KL data-fitting term. Numerical experiments illustrate the efficiency and stability of the algorithms that are trained on a random subset of image data before being applied to other images. Our 3D localization algorithms can be readily applied to other kinds of depth-encoding PSFs as well.Comment: 28 page

    Blind Two-Dimensional Super-Resolution and Its Performance Guarantee

    Full text link
    In this work, we study the problem of identifying the parameters of a linear system from its response to multiple unknown input waveforms. We assume that the system response, which is the only given information, is a scaled superposition of time-delayed and frequency-shifted versions of the unknown waveforms. Such kind of problem is severely ill-posed and does not yield a unique solution without introducing further constraints. To fully characterize the linear system, we assume that the unknown waveforms lie in a common known low-dimensional subspace that satisfies certain randomness and concentration properties. Then, we develop a blind two-dimensional (2D) super-resolution framework that applies to a large number of applications such as radar imaging, image restoration, and indoor source localization. In this framework, we show that under a minimum separation condition between the time-frequency shifts, all the unknowns that characterize the linear system can be recovered precisely and with very high probability provided that a lower bound on the total number of the observed samples is satisfied. The proposed framework is based on 2D atomic norm minimization problem which is shown to be reformulated and solved efficiently via semidefinite programming. Simulation results that confirm the theoretical findings of the paper are provided
    • …
    corecore