1,587 research outputs found

    Stable super-resolution limit and smallest singular value of restricted Fourier matrices

    Full text link
    Super-resolution refers to the process of recovering the locations and amplitudes of a collection of point sources, represented as a discrete measure, given M+1M+1 of its noisy low-frequency Fourier coefficients. The recovery process is highly sensitive to noise whenever the distance Δ\Delta between the two closest point sources is less than 1/M1/M. This paper studies the {\it fundamental difficulty of super-resolution} and the {\it performance guarantees of a subspace method called MUSIC} in the regime that Δ<1/M\Delta<1/M. The most important quantity in our theory is the minimum singular value of the Vandermonde matrix whose nodes are specified by the source locations. Under the assumption that the nodes are closely spaced within several well-separated clumps, we derive a sharp and non-asymptotic lower bound for this quantity. Our estimate is given as a weighted 2\ell^2 sum, where each term only depends on the configuration of each individual clump. This implies that, as the noise increases, the super-resolution capability of MUSIC degrades according to a power law where the exponent depends on the cardinality of the largest clump. Numerical experiments validate our theoretical bounds for the minimum singular value and the resolution limit of MUSIC. When there are SS point sources located on a grid with spacing 1/N1/N, the fundamental difficulty of super-resolution can be quantitatively characterized by a min-max error, which is the reconstruction error incurred by the best possible algorithm in the worst-case scenario. We show that the min-max error is closely related to the minimum singular value of Vandermonde matrices, and we provide a non-asymptotic and sharp estimate for the min-max error, where the dominant term is (N/M)2S1(N/M)^{2S-1}.Comment: 47 pages, 8 figure

    Superfast Line Spectral Estimation

    Get PDF
    A number of recent works have proposed to solve the line spectral estimation problem by applying off-the-grid extensions of sparse estimation techniques. These methods are preferable over classical line spectral estimation algorithms because they inherently estimate the model order. However, they all have computation times which grow at least cubically in the problem size, thus limiting their practical applicability in cases with large dimensions. To alleviate this issue, we propose a low-complexity method for line spectral estimation, which also draws on ideas from sparse estimation. Our method is based on a Bayesian view of the problem. The signal covariance matrix is shown to have Toeplitz structure, allowing superfast Toeplitz inversion to be used. We demonstrate that our method achieves estimation accuracy at least as good as current methods and that it does so while being orders of magnitudes faster.Comment: 16 pages, 7 figures, accepted for IEEE Transactions on Signal Processin
    corecore