155 research outputs found

    Support detection in super-resolution

    Full text link
    We study the problem of super-resolving a superposition of point sources from noisy low-pass data with a cut-off frequency f. Solving a tractable convex program is shown to locate the elements of the support with high precision as long as they are separated by 2/f and the noise level is small with respect to the amplitude of the signal

    Accuracy of spike-train Fourier reconstruction for colliding nodes

    Full text link
    We consider Fourier reconstruction problem for signals F, which are linear combinations of shifted delta-functions. We assume the Fourier transform of F to be known on the frequency interval [-N,N], with an absolute error not exceeding e > 0. We give an absolute lower bound (which is valid with any reconstruction method) for the "worst case" reconstruction error of F in situations where the nodes (i.e. the positions of the shifted delta-functions in F) are known to form an l elements cluster of a size h << 1. Using "decimation" reconstruction algorithm we provide an upper bound for the reconstruction error, essentially of the same form as the lower one. Roughly, our main result states that for N*h of order of (2l-1)-st root of e the worst case reconstruction error of the cluster nodes is of the same order as h, and hence the inside configuration of the cluster nodes (in the worst case scenario) cannot be reconstructed at all. On the other hand, decimation algorithm reconstructs F with the accuracy of order of 2l-st root of e
    • …
    corecore