2 research outputs found

    Direction Finding of Electromagnetic Sources on a Sparse Cross-Dipole Array Using One-Bit Measurements

    Full text link
    Sparse array arrangement has been widely used in vector-sensor arrays because of increased degree-of-freedoms for identifying more sources than sensors. For large-size sparse vector-sensor arrays, one-bit measurements can further reduce the receiver system complexity by using low-resolution ADCs. In this paper, we present a sparse cross-dipole array with one-bit measurements to estimate Direction of Arrivals (DOA) of electromagnetic sources. Based on the independence assumption of sources, we establish the relation between the covariance matrix of one-bit measurements and that of unquantized measurements by Bussgang Theorem. Then we develop a Spatial-Smooth MUSIC (SS-MUSIC) based method, One-Bit MUSIC (OB-MUSIC), to estimate the DOAs. By jointly utilizing the covariance matrices of two dipole arrays, we find that OB-MUSIC is robust against polarization states. We also derive the Cramer-Rao bound (CRB) of DOA estimation for the proposed scheme. Furthermore, we theoretically analyze the applicability of the independence assumption of sources, which is the fundamental of the proposed and other typical methods, and verify the assumption in typical communication applications. Numerical results show that, with the same number of sensors, one-bit sparse cross-dipole arrays have comparable performance with unquantized uniform linear arrays and thus provide a compromise between the DOA estimation performance and the system complexity

    Gridless Parameter Estimation for One-Bit MIMO Radar with Time-Varying Thresholds

    Full text link
    We investigate the one-bit MIMO (1b-MIMO) radar that performs one-bit sampling with a time-varying threshold in the temporal domain and employs compressive sensing in the spatial and Doppler domains. The goals are to significantly reduce the hardware cost, energy consumption, and amount of stored data. The joint angle and Doppler frequency estimations from noisy one-bit data are studied. By showing that the effect of noise on one-bit sampling is equivalent to that of sparse impulsive perturbations, we formulate the one-bit â„“1\ell_1-regularized atomic-norm minimization (1b-ANM-L1) problem to achieve gridless parameter estimation with high accuracy. We also develop an iterative method for solving the 1b-ANM-L1 problem via the alternating direction method of multipliers. The CrameËŠ\acute{\text{e}}r-Rao bound (CRB) of the 1b-MIMO radar is analyzed, and the analytical performance of one-bit sampling with two different threshold strategies is discussed. Numerical experiments are presented to show that the 1b-MIMO radar can achieve high-resolution parameter estimation with a largely reduced amount of data.Comment: 31 pages, 12 figure
    corecore