1,825 research outputs found

    ADMM-Net: A Deep Learning Approach for Compressive Sensing MRI

    Full text link
    Compressive sensing (CS) is an effective approach for fast Magnetic Resonance Imaging (MRI). It aims at reconstructing MR images from a small number of under-sampled data in k-space, and accelerating the data acquisition in MRI. To improve the current MRI system in reconstruction accuracy and speed, in this paper, we propose two novel deep architectures, dubbed ADMM-Nets in basic and generalized versions. ADMM-Nets are defined over data flow graphs, which are derived from the iterative procedures in Alternating Direction Method of Multipliers (ADMM) algorithm for optimizing a general CS-based MRI model. They take the sampled k-space data as inputs and output reconstructed MR images. Moreover, we extend our network to cope with complex-valued MR images. In the training phase, all parameters of the nets, e.g., transforms, shrinkage functions, etc., are discriminatively trained end-to-end. In the testing phase, they have computational overhead similar to ADMM algorithm but use optimized parameters learned from the data for CS-based reconstruction task. We investigate different configurations in network structures and conduct extensive experiments on MR image reconstruction under different sampling rates. Due to the combination of the advantages in model-based approach and deep learning approach, the ADMM-Nets achieve state-of-the-art reconstruction accuracies with fast computational speed

    Deep Learning with Domain Adaptation for Accelerated Projection-Reconstruction MR

    Full text link
    Purpose: The radial k-space trajectory is a well-established sampling trajectory used in conjunction with magnetic resonance imaging. However, the radial k-space trajectory requires a large number of radial lines for high-resolution reconstruction. Increasing the number of radial lines causes longer acquisition time, making it more difficult for routine clinical use. On the other hand, if we reduce the number of radial lines, streaking artifact patterns are unavoidable. To solve this problem, we propose a novel deep learning approach with domain adaptation to restore high-resolution MR images from under-sampled k-space data. Methods: The proposed deep network removes the streaking artifacts from the artifact corrupted images. To address the situation given the limited available data, we propose a domain adaptation scheme that employs a pre-trained network using a large number of x-ray computed tomography (CT) or synthesized radial MR datasets, which is then fine-tuned with only a few radial MR datasets. Results: The proposed method outperforms existing compressed sensing algorithms, such as the total variation and PR-FOCUSS methods. In addition, the calculation time is several orders of magnitude faster than the total variation and PR-FOCUSS methods.Moreover, we found that pre-training using CT or MR data from similar organ data is more important than pre-training using data from the same modality for different organ. Conclusion: We demonstrate the possibility of a domain-adaptation when only a limited amount of MR data is available. The proposed method surpasses the existing compressed sensing algorithms in terms of the image quality and computation time.Comment: This paper has been accepted and will soon appear in Magnetic Resonance in Medicin

    Super-resolution MRI through Deep Learning

    Full text link
    Magnetic resonance imaging (MRI) is extensively used for diagnosis and image-guided therapeutics. Due to hardware, physical and physiological limitations, acquisition of high-resolution MRI data takes long scan time at high system cost, and could be limited to low spatial coverage and also subject to motion artifacts. Super-resolution MRI can be achieved with deep learning, which is a promising approach and has a great potential for preclinical and clinical imaging. Compared with polynomial interpolation or sparse-coding algorithms, deep learning extracts prior knowledge from big data and produces superior MRI images from a low-resolution counterpart. In this paper, we adapt two state-of-the-art neural network models for CT denoising and deblurring, transfer them for super-resolution MRI, and demonstrate encouraging super-resolution MRI results toward two-fold resolution enhancement

    Deep Embedding Convolutional Neural Network for Synthesizing CT Image from T1-Weighted MR Image

    Full text link
    Recently, more and more attention is drawn to the field of medical image synthesis across modalities. Among them, the synthesis of computed tomography (CT) image from T1-weighted magnetic resonance (MR) image is of great importance, although the mapping between them is highly complex due to large gaps of appearances of the two modalities. In this work, we aim to tackle this MR-to-CT synthesis by a novel deep embedding convolutional neural network (DECNN). Specifically, we generate the feature maps from MR images, and then transform these feature maps forward through convolutional layers in the network. We can further compute a tentative CT synthesis from the midway of the flow of feature maps, and then embed this tentative CT synthesis back to the feature maps. This embedding operation results in better feature maps, which are further transformed forward in DECNN. After repeat-ing this embedding procedure for several times in the network, we can eventually synthesize a final CT image in the end of the DECNN. We have validated our proposed method on both brain and prostate datasets, by also compar-ing with the state-of-the-art methods. Experimental results suggest that our DECNN (with repeated embedding op-erations) demonstrates its superior performances, in terms of both the perceptive quality of the synthesized CT image and the run-time cost for synthesizing a CT image

    Deep artifact learning for compressed sensing and parallel MRI

    Full text link
    Purpose: Compressed sensing MRI (CS-MRI) from single and parallel coils is one of the powerful ways to reduce the scan time of MR imaging with performance guarantee. However, the computational costs are usually expensive. This paper aims to propose a computationally fast and accurate deep learning algorithm for the reconstruction of MR images from highly down-sampled k-space data. Theory: Based on the topological analysis, we show that the data manifold of the aliasing artifact is easier to learn from a uniform subsampling pattern with additional low-frequency k-space data. Thus, we develop deep aliasing artifact learning networks for the magnitude and phase images to estimate and remove the aliasing artifacts from highly accelerated MR acquisition. Methods: The aliasing artifacts are directly estimated from the distorted magnitude and phase images reconstructed from subsampled k-space data so that we can get an aliasing-free images by subtracting the estimated aliasing artifact from corrupted inputs. Moreover, to deal with the globally distributed aliasing artifact, we develop a multi-scale deep neural network with a large receptive field. Results: The experimental results confirm that the proposed deep artifact learning network effectively estimates and removes the aliasing artifacts. Compared to existing CS methods from single and multi-coli data, the proposed network shows minimal errors by removing the coherent aliasing artifacts. Furthermore, the computational time is by order of magnitude faster. Conclusion: As the proposed deep artifact learning network immediately generates accurate reconstruction, it has great potential for clinical applications

    Overview of image-to-image translation by use of deep neural networks: denoising, super-resolution, modality conversion, and reconstruction in medical imaging

    Full text link
    Since the advent of deep convolutional neural networks (DNNs), computer vision has seen an extremely rapid progress that has led to huge advances in medical imaging. This article does not aim to cover all aspects of the field but focuses on a particular topic, image-to-image translation. Although the topic may not sound familiar, it turns out that many seemingly irrelevant applications can be understood as instances of image-to-image translation. Such applications include (1) noise reduction, (2) super-resolution, (3) image synthesis, and (4) reconstruction. The same underlying principles and algorithms work for various tasks. Our aim is to introduce some of the key ideas on this topic from a uniform point of view. We introduce core ideas and jargon that are specific to image processing by use of DNNs. Having an intuitive grasp of the core ideas of and a knowledge of technical terms would be of great help to the reader for understanding the existing and future applications. Most of the recent applications which build on image-to-image translation are based on one of two fundamental architectures, called pix2pix and CycleGAN, depending on whether the available training data are paired or unpaired. We provide computer codes which implement these two architectures with various enhancements. Our codes are available online with use of the very permissive MIT license. We provide a hands-on tutorial for training a model for denoising based on our codes. We hope that this article, together with the codes, will provide both an overview and the details of the key algorithms, and that it will serve as a basis for the development of new applications.Comment: many typos are fixed. to appear in Radiological Physics and Technolog

    200x Low-dose PET Reconstruction using Deep Learning

    Full text link
    Positron emission tomography (PET) is widely used in various clinical applications, including cancer diagnosis, heart disease and neuro disorders. The use of radioactive tracer in PET imaging raises concerns due to the risk of radiation exposure. To minimize this potential risk in PET imaging, efforts have been made to reduce the amount of radio-tracer usage. However, lowing dose results in low Signal-to-Noise-Ratio (SNR) and loss of information, both of which will heavily affect clinical diagnosis. Besides, the ill-conditioning of low-dose PET image reconstruction makes it a difficult problem for iterative reconstruction algorithms. Previous methods proposed are typically complicated and slow, yet still cannot yield satisfactory results at significantly low dose. Here, we propose a deep learning method to resolve this issue with an encoder-decoder residual deep network with concatenate skip connections. Experiments shows the proposed method can reconstruct low-dose PET image to a standard-dose quality with only two-hundredth dose. Different cost functions for training model are explored. Multi-slice input strategy is introduced to provide the network with more structural information and make it more robust to noise. Evaluation on ultra-low-dose clinical data shows that the proposed method can achieve better result than the state-of-the-art methods and reconstruct images with comparable quality using only 0.5% of the original regular dose

    Learning to Decode 7T-like MR Image Reconstruction from 3T MR Images

    Full text link
    Increasing demand for high field magnetic resonance (MR) scanner indicates the need for high-quality MR images for accurate medical diagnosis. However, cost constraints, instead, motivate a need for algorithms to enhance images from low field scanners. We propose an approach to process the given low field (3T) MR image slices to reconstruct the corresponding high field (7T-like) slices. Our framework involves a novel architecture of a merged convolutional autoencoder with a single encoder and multiple decoders. Specifically, we employ three decoders with random initializations, and the proposed training approach involves selection of a particular decoder in each weight-update iteration for back propagation. We demonstrate that the proposed algorithm outperforms some related contemporary methods in terms of performance and reconstruction time

    Denoising of 3-D Magnetic Resonance Images Using a Residual Encoder-Decoder Wasserstein Generative Adversarial Network

    Full text link
    Structure-preserved denoising of 3D magnetic resonance imaging (MRI) images is a critical step in medical image analysis. Over the past few years, many algorithms with impressive performances have been proposed. In this paper, inspired by the idea of deep learning, we introduce an MRI denoising method based on the residual encoder-decoder Wasserstein generative adversarial network (RED-WGAN). Specifically, to explore the structure similarity between neighboring slices, a 3D configuration is utilized as the basic processing unit. Residual autoencoders combined with deconvolution operations are introduced into the generator network. Furthermore, to alleviate the oversmoothing shortcoming of the traditional mean squared error (MSE) loss function, the perceptual similarity, which is implemented by calculating the distances in the feature space extracted by a pretrained VGG-19 network, is incorporated with the MSE and adversarial losses to form the new loss function. Extensive experiments are implemented to assess the performance of the proposed method. The experimental results show that the proposed RED-WGAN achieves performance superior to several state-of-the-art methods in both simulated and real clinical data. In particular, our method demonstrates powerful abilities in both noise suppression and structure preservation.Comment: To appear on Medical Image Analysis. 29 pages, 15 figures, 7 table

    Channel Splitting Network for Single MR Image Super-Resolution

    Full text link
    High resolution magnetic resonance (MR) imaging is desirable in many clinical applications due to its contribution to more accurate subsequent analyses and early clinical diagnoses. Single image super resolution (SISR) is an effective and cost efficient alternative technique to improve the spatial resolution of MR images. In the past few years, SISR methods based on deep learning techniques, especially convolutional neural networks (CNNs), have achieved state-of-the-art performance on natural images. However, the information is gradually weakened and training becomes increasingly difficult as the network deepens. The problem is more serious for medical images because lacking high quality and effective training samples makes deep models prone to underfitting or overfitting. Nevertheless, many current models treat the hierarchical features on different channels equivalently, which is not helpful for the models to deal with the hierarchical features discriminatively and targetedly. To this end, we present a novel channel splitting network (CSN) to ease the representational burden of deep models. The proposed CSN model divides the hierarchical features into two branches, i.e., residual branch and dense branch, with different information transmissions. The residual branch is able to promote feature reuse, while the dense branch is beneficial to the exploration of new features. Besides, we also adopt the merge-and-run mapping to facilitate information integration between different branches. Extensive experiments on various MR images, including proton density (PD), T1 and T2 images, show that the proposed CSN model achieves superior performance over other state-of-the-art SISR methods.Comment: 13 pages, 11 figures and 4 table
    • …
    corecore