9,376 research outputs found

    Super Resolution Phase Retrieval for Sparse Signals

    Get PDF
    In a variety of fields, in particular those involving imaging and optics, we often measure signals whose phase is missing or has been irremediably distorted. Phase retrieval attempts to recover the phase information of a signal from the magnitude of its Fourier transform to enable the reconstruction of the original signal. Solving the phase retrieval problem is equivalent to recovering a signal from its auto-correlation function. In this paper, we assume the original signal to be sparse; this is a natural assumption in many applications, such as X-ray crystallography, speckle imaging and blind channel estimation. We propose an algorithm that resolves the phase retrieval problem in three stages: i) we leverage the finite rate of innovation sampling theory to super-resolve the auto-correlation function from a limited number of samples, ii) we design a greedy algorithm that identifies the locations of a sparse solution given the super-resolved auto-correlation function, iii) we recover the amplitudes of the atoms given their locations and the measured auto-correlation function. Unlike traditional approaches that recover a discrete approximation of the underlying signal, our algorithm estimates the signal on a continuous domain, which makes it the first of its kind. Along with the algorithm, we derive its performance bound with a theoretical analysis and propose a set of enhancements to improve its computational complexity and noise resilience. Finally, we demonstrate the benefits of the proposed method via a comparison against Charge Flipping, a notable algorithm in crystallography

    Phaseless super-resolution in the continuous domain

    Full text link
    Phaseless super-resolution refers to the problem of superresolving a signal from only its low-frequency Fourier magnitude measurements. In this paper, we consider the phaseless super-resolution problem of recovering a sum of sparse Dirac delta functions which can be located anywhere in the continuous time-domain. For such signals in the continuous domain, we propose a novel Semidefinite Programming (SDP) based signal recovery method to achieve the phaseless superresolution. This work extends the recent work of Jaganathan et al. [1], which considered phaseless super-resolution for discrete signals on the grid

    Sampling and Super-resolution of Sparse Signals Beyond the Fourier Domain

    Full text link
    Recovering a sparse signal from its low-pass projections in the Fourier domain is a problem of broad interest in science and engineering and is commonly referred to as super-resolution. In many cases, however, Fourier domain may not be the natural choice. For example, in holography, low-pass projections of sparse signals are obtained in the Fresnel domain. Similarly, time-varying system identification relies on low-pass projections on the space of linear frequency modulated signals. In this paper, we study the recovery of sparse signals from low-pass projections in the Special Affine Fourier Transform domain (SAFT). The SAFT parametrically generalizes a number of well known unitary transformations that are used in signal processing and optics. In analogy to the Shannon's sampling framework, we specify sampling theorems for recovery of sparse signals considering three specific cases: (1) sampling with arbitrary, bandlimited kernels, (2) sampling with smooth, time-limited kernels and, (3) recovery from Gabor transform measurements linked with the SAFT domain. Our work offers a unifying perspective on the sparse sampling problem which is compatible with the Fourier, Fresnel and Fractional Fourier domain based results. In deriving our results, we introduce the SAFT series (analogous to the Fourier series) and the short time SAFT, and study convolution theorems that establish a convolution--multiplication property in the SAFT domain.Comment: 42 pages, 3 figures, manuscript under revie

    Phase Retrieval with Application to Optical Imaging

    Get PDF
    This review article provides a contemporary overview of phase retrieval in optical imaging, linking the relevant optical physics to the information processing methods and algorithms. Its purpose is to describe the current state of the art in this area, identify challenges, and suggest vision and areas where signal processing methods can have a large impact on optical imaging and on the world of imaging at large, with applications in a variety of fields ranging from biology and chemistry to physics and engineering

    Multiple Illumination Phaseless Super-Resolution (MIPS) with Applications To Phaseless DOA Estimation and Diffraction Imaging

    Get PDF
    Phaseless super-resolution is the problem of recovering an unknown signal from measurements of the magnitudes of the low frequency Fourier transform of the signal. This problem arises in applications where measuring the phase, and making high-frequency measurements, are either too costly or altogether infeasible. The problem is especially challenging because it combines the difficult problems of phase retrieval and classical super-resolutionComment: To appear in ICASSP 201
    • …
    corecore