124,259 research outputs found

    Vacuum moulding of a superplastic

    Get PDF
    The objective of this research is to develop a model for simulating the super-plastic forming process and for predicting the thickness distribution as well the minimum radius of curvature when the material has to fill a sharp corner. Other questions of interest are the deflection of the sheet as a function of pressure for a given mould opening, and the deflection as a function of mould diameter for a given pressure. Modeling based on shell theory is carried out for cylindrical, spherical and arbitrary-shape shells of uniform as well as non-uniform thick- nesses

    Efficient implicit simulation for incremental forming

    Get PDF
    Single Point Incremental Forming (SPIF) is a displacement controlled process performed on a CNC machine. A clamped blank is deformed by the movement of a small sized tool that follows a prescribed tool path. An extensive overview of the process has been given in [1]. The tool size plays a crucial role in the SPIF process. The small radius of the forming tool concentrates the strain at the zone of deformation in the sheet under the forming tool. The tool has to travel a lengthy forming path all over the blank to introduce the deformation. Numerically, this requires performing thousands of load increments on a relatively fine FE model resulting in enormous computing time. A typical computing time for implicit simulation of a small academic test is measured in by days. The focus of this paper is to efficiently use the implicit time integration method in order to reduce the required computing time for incremental forming implicit simulation drastically

    The mechanical behaviour of an ultrafine grained Ti-47Al-2Cr (at%) alloy in tension and compression and at different temperatures

    Get PDF
    A bulk ultrafine grained (UFG) Ti-47Al-2Cr (at%) alloy has been produced using a powder metallurgy process that combines high energy mechanical milling (HEMM) of a mixture of Ti, Al and Cr powders to produce a Ti/Al/Cr composite powder and hot isostatic pressing (HIP) of the composite powder compact. The purpose of the present study is to determine the mechanical behaviour of the alloy in tension and compression at room temperature (RT) and elevated temperatures, and also to compare the compression behaviour of the material with its tensile behaviour. It has been found that due to the residual pores, lack of full level interparticle bonding and high oxygen content (0.87wt%) in the consolidated samples, the UFG TiAl based alloy has a very low room temperature tensile fracture strength of 100 MPa and shows no tensile ductility. However these microstructural defects and high oxygen content have much less significant effect on the room temperature compressive mechanical properties, and the alloy shows a high compressive yield strength of 1410 MPa, and some ductility (plastic strain to fracture 4%). At elevated temperatures of 800oC and above, the alloy shows high tensile and compressive ductility as demonstrated by 75% tensile elongation to fracture and no cracking in upset forging with a height reduction of 50% at 900oC. The yield strength of the alloy at 900oC is 55 MPa in tension and 33 MPa in compression, both of which are lower than those of coarse grained TiAl based alloys with similar compositions at 900oC. This is due to a higher creep rate of the UFG alloy caused by the small grains. The good formability of the UFG TiAl based alloy as reflected by the lower critical temperature above which the alloy becomes highly formable indicates that the material can be used as a suitable precursor for secondary thermomechanical processing and super-plastic forming

    Material flow during the extrusion of simple and complex cross-sections using FEM

    Get PDF
    This paper deals with the extrusion of rod and shape sections and uses a 3D finite element model analysis (FEM) to predict the effect of die geometry on maximum extrusion load. A description of material flow in the container is considered in more detail for rod and shape sections in order to fully comprehend the transient conditions occurring during the process cycle. A comparison with experiments is made to assess the relative importance of some extrusion parameters in the extrusion process and to ensure that the numerical discretisation yields a realistic simulation of the process. The usefulness and the limitation of FEM are discussed when modelling complex shapes. Results are presented for velocity contours and shear stress distribution during the extrusion process. It is shown that for most of the shapes investigated, the material making up the extrudate cross-sections originates from differing regions of virgin material within the billet. The outside surface of the extrudate originates from the material moving along the dead metal zone (DMZ) and the core of the extrudate from the central deformation zone. The FE program appears to predict all the major characteristics of the flow observed macroscopically

    Superplastic forming simulation of RF detector foils

    Get PDF
    Complex-shaped sheet products, such as R(adio) F(requency) shieldings sheets, used in a subatomic particle\ud detector, can be manufactured by superplastic forming. To predict whether a formed sheet is resistant against gas leakage,\ud FE simulations are used, involving a user-defined material model. This model incorporates an initial flow stress, including\ud strain rate hardening. It also involves strain hardening and softening, the latter because of void formation and growth inside\ud the material. Also, a pressure-dependency is built in; an applied hydrostatic pressure during the forming process postpones\ud void formation. The material model is constructed in pursuance of the results of uniaxial and biaxial experiment

    Shear-transformation-zone theory of plastic deformation near the glass transition

    Full text link
    The shear-transformation-zone (STZ) theory of plastic deformation in glass-forming materials is reformulated in light of recent progress in understanding the roles played the effective disorder temperature and entropy flow in nonequilibrium situations. A distinction between fast and slow internal state variables reduces the theory to just two coupled equations of motion, one describing the plastic response to applied stresses, and the other the dynamics of the effective temperature. The analysis leading to these equations contains, as a byproduct, a fundamental reinterpretation of the dynamic yield stress in amorphous materials. In order to put all these concepts together in a realistic context, the paper concludes with a reexamination of the experimentally observed rheological behavior of a bulk metallic glass. That reexamination serves as a test of the STZ dynamics, confirming that system parameters obtained from steady-state properties such as the viscosity can be used to predict transient behaviors.Comment: 15 pages, four figure

    Material flow during the extrusion of simple and complex cross-sections using FEM

    Get PDF
    This paper deals with the extrusion of rod and shape sections and uses a 3D finite element model analysis (FEM) to predict the effect of die geometry on maximum extrusion load. A description of material flow in the container is considered in more detail for rod and shape sections in order to fully comprehend the transient conditions occurring during the process cycle. A comparison with experiments is made to assess the relative importance of some extrusion parameters in the extrusion process and to ensure that the numerical discretisation yields a realistic simulation of the process. The usefulness and the limitation of FEM are discussed when modelling complex shapes. Results are presented for velocity contours and shear stress distribution during the extrusion process. It is shown that for most of the shapes investigated, the material making up the extrudate cross-sections originates from differing regions of virgin material within the billet. The outside surface of the extrudate originates from the material moving along the dead metal zone (DMZ) and the core of the extrudate from the central deformation zone. The FE program appears to predict all the major characteristics of the flow observed macroscopically

    Deformation and crystallization of Zr-based amorphous alloys in homogeneous flow regime

    Get PDF
    The purpose of this study is to experimentally investigate the interaction of inelastic deformation and microstructural changes of two Zr-based bulk metallic glasses (BMGs): Zr_(41.25)Ti_(13.75)Cu_(12.5)Ni_(10)Be_(22.5) (commercially designated as Vitreloy 1 or Vit1) and Zr_(46.75)Ti_(8.25)Cu_(7.5)Ni_(10)Be_(27.5) (Vitreloy 4, Vit4). High-temperature uniaxial compression tests were performed on the two Zr alloys at various strain rates, followed by structural characterization using differential scanning calorimetry (DSC) and transmission electron microscopy (TEM). Two distinct modes of mechanically induced atomic disordering in the two alloys were observed, with Vit1 featuring clear phase separation and crystallization after deformation as observed with TEM, while Vit4 showing only structural relaxation with no crystallization. The influence of the structural changes on the mechanical behaviors of the two materials was further investigated by jump-in-strain-rate tests, and flow softening was observed in Vit4. A free volume theory was applied to explain the deformation behaviors, and the activation volumes were calculated for both alloys

    Steady-state, effective-temperature dynamics in a glassy material

    Full text link
    We present an STZ-based analysis of numerical simulations by Haxton and Liu (HL). The extensive HL data sharply test the basic assumptions of the STZ theory, especially the central role played by the effective disorder temperature as a dynamical state variable. We find that the theory survives these tests, and that the HL data provide important and interesting constraints on some of its specific ingredients. Our most surprising conclusion is that, when driven at various constant shear rates in the low-temperature glassy state, the HL system exhibits a classic glass transition, including super-Arrhenius behavior, as a function of the effective temperature.Comment: 9 pages, 6 figure
    corecore