17 research outputs found

    A general framework to construct schemes satisfying additional conservation relations. Application to entropy conservative and entropy dissipative schemes

    Full text link
    We are interested in the approximation of a steady hyperbolic problem. In some cases, the solution can satisfy an additional conservation relation, at least when it is smooth. This is the case of an entropy. In this paper, we show, starting from the discretisation of the original PDE, how to construct a scheme that is consistent with the original PDE and the additional conservation relation. Since one interesting example is given by the systems endowed by an entropy, we provide one explicit solution, and show that the accuracy of the new scheme is at most degraded by one order. In the case of a discontinuous Galerkin scheme and a Residual distribution scheme, we show how not to degrade the accuracy. This improves the recent results obtained in [1, 2, 3, 4] in the sense that no particular constraints are set on quadrature formula and that a priori maximum accuracy can still be achieved. We study the behavior of the method on a non linear scalar problem. However, the method is not restricted to scalar problems

    Summation-by-parts operators for general function spaces: The second derivative

    Full text link
    Many applications rely on solving time-dependent partial differential equations (PDEs) that include second derivatives. Summation-by-parts (SBP) operators are crucial for developing stable, high-order accurate numerical methodologies for such problems. Conventionally, SBP operators are tailored to the assumption that polynomials accurately approximate the solution, and SBP operators should thus be exact for them. However, this assumption falls short for a range of problems for which other approximation spaces are better suited. We recently addressed this issue and developed a theory for first-derivative SBP operators based on general function spaces, coined function-space SBP (FSBP) operators. In this paper, we extend the innovation of FSBP operators to accommodate second derivatives. The developed second-derivative FSBP operators maintain the desired mimetic properties of existing polynomial SBP operators while allowing for greater flexibility by being applicable to a broader range of function spaces. We establish the existence of these operators and detail a straightforward methodology for constructing them. By exploring various function spaces, including trigonometric, exponential, and radial basis functions, we illustrate the versatility of our approach. We showcase the superior performance of these non-polynomial FSBP operators over traditional polynomial-based operators for a suite of one- and two-dimensional problems, encompassing a boundary layer problem and the viscous Burgers' equation. The work presented here opens up possibilities for using second-derivative SBP operators based on suitable function spaces, paving the way for a wide range of applications in the future.Comment: 20 pages, 7 figure

    Stability of Correction Procedure via Reconstruction With Summation-by-Parts Operators for Burgers' Equation Using a Polynomial Chaos Approach

    Get PDF
    In this paper, we consider Burgers' equation with uncertain boundary and initial conditions. The polynomial chaos (PC) approach yields a hyperbolic system of deterministic equations, which can be solved by several numerical methods. Here, we apply the correction procedure via reconstruction (CPR) using summation-by-parts operators. We focus especially on stability, which is proven for CPR methods and the systems arising from the PC approach. Due to the usage of split-forms, the major challenge is to construct entropy stable numerical fluxes. For the first time, such numerical fluxes are constructed for all systems resulting from the PC approach for Burgers' equation. In numerical tests, we verify our results and show also the advantage of the given ansatz using CPR methods. Moreover, one of the simulations, i.e. Burgers' equation equipped with an initial shock, demonstrates quite fascinating observations. The behaviour of the numerical solutions from several methods (finite volume, finite difference, CPR) differ significantly from each other. Through careful investigations, we conclude that the reason for this is the high sensitivity of the system to varying dissipation. Furthermore, it should be stressed that the system is not strictly hyperbolic with genuinely nonlinear or linearly degenerate fields
    corecore