5 research outputs found

    Sufficient Conditions Used in Admittance Selection for Planar Force-guided Assembly

    Get PDF
    Admittance control approaches show significant promise in providing reliable force-guided assembly. An important issue in the development of these approaches is the specification of an appropriate admittance control law. This paper identifies procedures for selecting the appropriate admittance to achieve reliable planar force-guided assembly for single-point contact cases. A set of conditions that are imposed on the admittance matrix is presented. These conditions ensure that the motion that results from contact reduces part misalignment. We show that for bounded misalignment, if the conditions are satisfied for a finite number of contact configurations, the system ensures that force guidance is achieved for all intermediate configurations

    Sufficient Conditions for Admittance to Ensure Planar Force-assembly in Multi-point Frictionless Contact

    Get PDF
    An important issue in the development of force guidance assembly strategies is the specification of an appropriate admittance control law. This paper identifies procedures for selecting the appropriate admittance to achieve reliable planar force-guided assembly for multi-point contact cases. Conditions that restrict the admittance behavior for each of the various types of two-point contact are presented. These conditions ensure that the motion that results from contact reduces part misalignment for each case. We show that, for bounded misalignments, if the conditions are satisfied for a finite number of contact configurations, the conditions ensure that force guidance is achieved for all configurations within the specified bounds

    Efficient Contact State Graph Generation for Assembly Applications

    Get PDF
    An important aspect in the design of many automated assembly strategies is the ability to automatically generate the set of contact states that may occur during an assembly task. In this paper, we present an efficient means of constructing the set of all geometrically feasible contact states that may occur within a bounded set of misalignments (bounds determined by robot inaccuracy). This set is stored as a graph, referred to as an Assembly Contact State Graph (ACSG), which indicates neighbor relationships between feasible states. An ACSG is constructed without user intervention in two stages. In the first stage, all hypothetical primitive principle contacts (PPCs; all contact states allowing 5 degrees of freedom) are evaluated for geometric feasibility with respect to part-imposed and robot-imposed restrictions on relative positioning (evaluated using optimization). In the second stage, the feasibility of each of the various combinations of PPCs is efficiently evaluated, first using topological existence and uniqueness criteria, then using part-imposed and robot-imposed geometric criteria

    Admittance Selection for Planar Force-Guided Assembly for Single-Point Contact with Friction

    Get PDF
    This paper identifies procedures for selecting the appropriate admittance to achieve reliable planar force-guided assembly for single-point frictional contact cases. A set of conditions that are imposed on the admittance matrix is presented. These conditions ensure that the motion that results from contact reduces part misalignment. We show that, for bounded misalignments, if an admittance satisfies the misalignment-reduction conditions at a finite number of contact configurations and a given coefficient of friction /spl mu//sub M/) then the admittance will also ensure that the conditions are satisfied at all intermediate configurations for all coefficients less than /spl mu//sub M/

    Force control of heavy lift manipulators for high precision insertion tasks

    Get PDF
    Thesis (S.M.)--Massachusetts Institute of Technology, Dept. of Mechanical Engineering, June 2005."May 2005." Leaf 81 blank.Includes bibliographical references (leaves 67-70).The inherent strength of robotic manipulators can be used to assist humans in performing heavy lifting tasks. These robots reduce manpower, reduce fatigue, and increase productivity. This thesis deals with the development of a control system for a robot being built for this purpose. The task for this robot is to lift heavy payloads while performing complex insertion tasks. This task must be completed on the deck of a naval vessel where possible disturbances include wind, rain, poor visibility, and dynamic loads induced by a swaying deck. The primary objective of the controller being designed here is to allow for insertion of the payload despite tight positioning tolerances and disturbances like surface friction, joint friction, and dynamic loads from ship motions. A control structure designed for intuitive interaction between the robot and operator is analyzed and shown to be stable using an established environment interaction model. The controller is shown to perform within established specifications via numerical simulation based on simple user inputs. An additional objective of this controller design is to prevent part jamming during the insertion task. With a large, powerful manipulator, the chances of a jam occurring is high. Without the use of bilateral force feedback, it will be difficult for the operator feel when these jams will occur and there will be no information about how to prevent them. This thesis analyzes the geometry and mechanics of the jamming problem and derives a control system to assist the user in preventing these jams. These methods can be extended to other insertion tasks simply by specifying the appropriate geometry.by Matthew A. DiCicco.S.M
    corecore