257 research outputs found

    Secrecy Energy Efficiency of MIMOME Wiretap Channels with Full-Duplex Jamming

    Full text link
    Full-duplex (FD) jamming transceivers are recently shown to enhance the information security of wireless communication systems by simultaneously transmitting artificial noise (AN) while receiving information. In this work, we investigate if FD jamming can also improve the systems secrecy energy efficiency (SEE) in terms of securely communicated bits-per- Joule, when considering the additional power used for jamming and self-interference (SI) cancellation. Moreover, the degrading effect of the residual SI is also taken into account. In this regard, we formulate a set of SEE maximization problems for a FD multiple-input-multiple-output multiple-antenna eavesdropper (MIMOME) wiretap channel, considering both cases where exact or statistical channel state information (CSI) is available. Due to the intractable problem structure, we propose iterative solutions in each case with a proven convergence to a stationary point. Numerical simulations indicate only a marginal SEE gain, through the utilization of FD jamming, for a wide range of system conditions. However, when SI can efficiently be mitigated, the observed gain is considerable for scenarios with a small distance between the FD node and the eavesdropper, a high Signal-to-noise ratio (SNR), or for a bidirectional FD communication setup.Comment: IEEE Transactions on Communication

    Hardware Impairments Aware Transceiver Design for Bidirectional Full-Duplex MIMO OFDM Systems

    Full text link
    In this paper we address the linear precoding and decoding design problem for a bidirectional orthogonal frequencydivision multiplexing (OFDM) communication system, between two multiple-input multiple-output (MIMO) full-duplex (FD) nodes. The effects of hardware distortion as well as the channel state information error are taken into account. In the first step, we transform the available time-domain characterization of the hardware distortions for FD MIMO transceivers to the frequency domain, via a linear Fourier transformation. As a result, the explicit impact of hardware inaccuracies on the residual selfinterference (RSI) and inter-carrier leakage (ICL) is formulated in relation to the intended transmit/received signals. Afterwards, linear precoding and decoding designs are proposed to enhance the system performance following the minimum-mean-squarederror (MMSE) and sum rate maximization strategies, assuming the availability of perfect or erroneous CSI. The proposed designs are based on the application of alternating optimization over the system parameters, leading to a necessary convergence. Numerical results indicate that the application of a distortionaware design is essential for a system with a high hardware distortion, or for a system with a low thermal noise variance.Comment: Submitted to IEEE for publicatio

    Partial-duplex amplify-and-forward relaying: spectral efficiency analysis under self-interference

    Get PDF
    We propose a novel mode of operation for Amplify-and-Forward relays in which the spectra of the relay input and output signals partially overlap. This partial-duplex relaying mode encompasses half-duplex and full-duplex as particular cases. By viewing the partial-duplex relay as a bandwidth-preserving Linear Periodic Time-Varying system, an analysis of the spectral efficiency in the presence of self-interference is developed. In contrast with previous works, self-interference is regarded as a useful information-bearing component rather than simply assimilated to noise. This approach reveals that previous results regarding the impact of self-interference on (full-duplex) relay performance are overly pessimistic. Based on a frequency-domain interpretation of the effect of self-interference, a number of suboptimal decoding architectures at the destination node are also discussed. It is found that the partial-duplex relaying mode may provide an attractive tradeoff between spectral efficiency and receiver complexity.Agencia Estatal de Investigación | Ref. TEC2016-75103-C2-2-RAgencia Estatal de Investigación | Ref. TEC2016-76409-C2-2
    • …
    corecore