1,597 research outputs found

    Anticipating Information Needs Based on Check-in Activity

    Full text link
    In this work we address the development of a smart personal assistant that is capable of anticipating a user's information needs based on a novel type of context: the person's activity inferred from her check-in records on a location-based social network. Our main contribution is a method that translates a check-in activity into an information need, which is in turn addressed with an appropriate information card. This task is challenging because of the large number of possible activities and related information needs, which need to be addressed in a mobile dashboard that is limited in size. Our approach considers each possible activity that might follow after the last (and already finished) activity, and selects the top information cards such that they maximize the likelihood of satisfying the user's information needs for all possible future scenarios. The proposed models also incorporate knowledge about the temporal dynamics of information needs. Using a combination of historical check-in data and manual assessments collected via crowdsourcing, we show experimentally the effectiveness of our approach.Comment: Proceedings of the 10th ACM International Conference on Web Search and Data Mining (WSDM '17), 201

    Time-aware metric embedding with asymmetric projection for successive POI recommendation

    Full text link
    © 2018, Springer Science+Business Media, LLC, part of Springer Nature. Successive Point-of-Interest (POI) recommendation aims to recommend next POIs for a given user based on this user’s current location. Indeed, with the rapid growth of Location-based Social Networks (LBSNs), successive POI recommendation has become an important and challenging task, since it can help to meet users’ dynamic interests based on their recent check-in behaviors. While some efforts have been made for this task, most of them do not capture the following properties: 1) The transition between consecutive POIs in user check-in sequences presents asymmetric property, however existing approaches usually assume the forward and backward transition probabilities between a POI pair are symmetric. 2) Users usually prefer different successive POIs at different time, but most existing studies do not consider this dynamic factor. To this end, in this paper, we propose a time-aware metric embedding approach with asymmetric projection (referred to as MEAP-T) for successive POI recommendation, which takes the above two properties into consideration. In addition, we exploit three latent Euclidean spaces to project the POI-POI, POI-user, and POI-time relationships. Finally, the experimental results on two real-world datasets show MEAP-T outperforms the state-of-the-art methods in terms of both precision and recall

    A Diffusion model for POI recommendation

    Full text link
    Next Point-of-Interest (POI) recommendation is a critical task in location-based services that aim to provide personalized suggestions for the user's next destination. Previous works on POI recommendation have laid focused on modeling the user's spatial preference. However, existing works that leverage spatial information are only based on the aggregation of users' previous visited positions, which discourages the model from recommending POIs in novel areas. This trait of position-based methods will harm the model's performance in many situations. Additionally, incorporating sequential information into the user's spatial preference remains a challenge. In this paper, we propose Diff-POI: a Diffusion-based model that samples the user's spatial preference for the next POI recommendation. Inspired by the wide application of diffusion algorithm in sampling from distributions, Diff-POI encodes the user's visiting sequence and spatial character with two tailor-designed graph encoding modules, followed by a diffusion-based sampling strategy to explore the user's spatial visiting trends. We leverage the diffusion process and its reversed form to sample from the posterior distribution and optimized the corresponding score function. We design a joint training and inference framework to optimize and evaluate the proposed Diff-POI. Extensive experiments on four real-world POI recommendation datasets demonstrate the superiority of our Diff-POI over state-of-the-art baseline methods. Further ablation and parameter studies on Diff-POI reveal the functionality and effectiveness of the proposed diffusion-based sampling strategy for addressing the limitations of existing methods

    Meta-learning enhanced next POI recommendation by leveraging check-ins from auxiliary cities

    Full text link
    Most existing point-of-interest (POI) recommenders aim to capture user preference by employing city-level user historical check-ins, thus facilitating users' exploration of the city. However, the scarcity of city-level user check-ins brings a significant challenge to user preference learning. Although prior studies attempt to mitigate this challenge by exploiting various context information, e.g., spatio-temporal information, they ignore to transfer the knowledge (i.e., common behavioral pattern) from other relevant cities (i.e., auxiliary cities). In this paper, we investigate the effect of knowledge distilled from auxiliary cities and thus propose a novel Meta-learning Enhanced next POI Recommendation framework (MERec). The MERec leverages the correlation of check-in behaviors among various cities into the meta-learning paradigm to help infer user preference in the target city, by holding the principle of "paying more attention to more correlated knowledge". Particularly, a city-level correlation strategy is devised to attentively capture common patterns among cities, so as to transfer more relevant knowledge from more correlated cities. Extensive experiments verify the superiority of the proposed MERec against state-of-the-art algorithms

    Travel Package Recommendation

    Get PDF
    Location Based SocialNetworks (LBSN) benefit the users by allowing them to share their locations and life moments with their friends. The users can also review the locations they have visited. Classical recommender systems provide users a ranked list of single items. This is not suitable for applications like trip planning,where the recommendations should contain multiple items in an appropriate sequence. The problem of generating such recommendations is challenging due to various critical aspects, which includes user interest, budget constraints and high sparsity in the available data used to solve the problem. In this paper, we propose a graph based approach to recommend a set of personalized travel packages. Each recommended package comprises of a sequence of multiple Point of Interests (POIs). Given the current location and spatio-temporal constraints, our goal is to recommend a package which satisfies the constraints. This approach utilizes the data collected fromLBSNs to learn user preferences and also models the location popularity
    corecore