11 research outputs found

    Subword and Crossword Units for CTC Acoustic Models

    Full text link
    This paper proposes a novel approach to create an unit set for CTC based speech recognition systems. By using Byte Pair Encoding we learn an unit set of an arbitrary size on a given training text. In contrast to using characters or words as units this allows us to find a good trade-off between the size of our unit set and the available training data. We evaluate both Crossword units, that may span multiple word, and Subword units. By combining this approach with decoding methods using a separate language model we are able to achieve state of the art results for grapheme based CTC systems.Comment: Current version accepted at Interspeech 201

    Self-Attention Networks for Connectionist Temporal Classification in Speech Recognition

    Full text link
    The success of self-attention in NLP has led to recent applications in end-to-end encoder-decoder architectures for speech recognition. Separately, connectionist temporal classification (CTC) has matured as an alignment-free, non-autoregressive approach to sequence transduction, either by itself or in various multitask and decoding frameworks. We propose SAN-CTC, a deep, fully self-attentional network for CTC, and show it is tractable and competitive for end-to-end speech recognition. SAN-CTC trains quickly and outperforms existing CTC models and most encoder-decoder models, with character error rates (CERs) of 4.7% in 1 day on WSJ eval92 and 2.8% in 1 week on LibriSpeech test-clean, with a fixed architecture and one GPU. Similar improvements hold for WERs after LM decoding. We motivate the architecture for speech, evaluate position and downsampling approaches, and explore how label alphabets (character, phoneme, subword) affect attention heads and performance.Comment: Accepted to ICASSP 201

    Hierarchical Multi Task Learning With CTC

    Full text link
    In Automatic Speech Recognition it is still challenging to learn useful intermediate representations when using high-level (or abstract) target units such as words. For that reason, character or phoneme based systems tend to outperform word-based systems when just few hundreds of hours of training data are being used. In this paper, we first show how hierarchical multi-task training can encourage the formation of useful intermediate representations. We achieve this by performing Connectionist Temporal Classification at different levels of the network with targets of different granularity. Our model thus performs predictions in multiple scales for the same input. On the standard 300h Switchboard training setup, our hierarchical multi-task architecture exhibits improvements over single-task architectures with the same number of parameters. Our model obtains 14.0% Word Error Rate on the Eval2000 Switchboard subset without any decoder or language model, outperforming the current state-of-the-art on acoustic-to-word models.Comment: In Proceedings at SLT 201
    corecore