36 research outputs found

    A review on initialization methods for nonnegative matrix factorization: Towards omics data experiments

    Get PDF
    Nonnegative Matrix Factorization (NMF) has acquired a relevant role in the panorama of knowledge extraction, thanks to the peculiarity that non-negativity applies to both bases and weights, which allows meaningful interpretations and is consistent with the natural human part-based learning process. Nevertheless, most NMF algorithms are iterative, so initialization methods affect convergence behaviour, the quality of the final solution, and NMF performance in terms of the residual of the cost function. Studies on the impact of NMF initialization techniques have been conducted for text or image datasets, but very few considerations can be found in the literature when biological datasets are studied, even though NMFs have largely demonstrated their usefulness in better understanding biological mechanisms with omic datasets. This paper aims to present the state-of-the-art on NMF initialization schemes along with some initial considerations on the impact of initialization methods when microarrays (a simple instance of omic data) are evaluated with NMF mechanisms. Using a series of measures to qualitatively examine the biological information extracted by a given NMF scheme, it preliminary appears that some information (e.g., represented by genes) can be extracted regardless of the initialization scheme used

    NON-MATRIX FACTORIZATION FOR BLIND IMAGE SEPARATION

    Get PDF
    Hyperspectral unmixing is a process to identify the constituent materials and estimate the corresponding fractions from the mixture, nonnegative matrix factions ( NMF ) is suitable as a candidate for the linear spectral mixture mode, has been applied to the unmixing hyperspectral data. Unfortunately, the local minima is cause by the nonconvexity of the objective function  makes the solution nonunique, thus only the nonnegativity constraint is not sufficient enough to lead to a well define problems. Therefore, two inherent characteristic of hyperspectal data, piecewise smoothness ( both temporal and spatial ) of spectral data and sparseness of abundance fraction of every material, are introduce to the NMF. The adaptive potential function from discontinuity adaptive Markov random field model is used to describe the smoothness constraint while preserving discontinuities is spectral data.  At the same time two NMF algorithms, non smooth NMS and NMF with sparseness constraint, are used to quantify the degree of sparseness of material abundances. Experiment using the synthetic and real data demonstrate the proposed algorithms provides an effective unsupervised technique for hyperspectial unmixing

    Advances in Nonnegative Matrix Decomposition with Application to Cluster Analysis

    Get PDF
    Nonnegative Matrix Factorization (NMF) has found a wide variety of applications in machine learning and data mining. NMF seeks to approximate a nonnegative data matrix by a product of several low-rank factorizing matrices, some of which are constrained to be nonnegative. Such additive nature often results in parts-based representation of the data, which is a desired property especially for cluster analysis.  This thesis presents advances in NMF with application in cluster analysis. It reviews a class of higher-order NMF methods called Quadratic Nonnegative Matrix Factorization (QNMF). QNMF differs from most existing NMF methods in that some of its factorizing matrices occur twice in the approximation. The thesis also reviews a structural matrix decomposition method based on Data-Cluster-Data (DCD) random walk. DCD goes beyond matrix factorization and has a solid probabilistic interpretation by forming the approximation with cluster assigning probabilities only. Besides, the Kullback-Leibler divergence adopted by DCD is advantageous in handling sparse similarities for cluster analysis.  Multiplicative update algorithms have been commonly used for optimizing NMF objectives, since they naturally maintain the nonnegativity constraint of the factorizing matrix and require no user-specified parameters. In this work, an adaptive multiplicative update algorithm is proposed to increase the convergence speed of QNMF objectives.  Initialization conditions play a key role in cluster analysis. In this thesis, a comprehensive initialization strategy is proposed to improve the clustering performance by combining a set of base clustering methods. The proposed method can better accommodate clustering methods that need a careful initialization such as the DCD.  The proposed methods have been tested on various real-world datasets, such as text documents, face images, protein, etc. In particular, the proposed approach has been applied to the cluster analysis of emotional data
    corecore