2,801 research outputs found
Resource-driven Substructural Defeasible Logic
Linear Logic and Defeasible Logic have been adopted to formalise different
features relevant to agents: consumption of resources, and reasoning with
exceptions. We propose a framework to combine sub-structural features,
corresponding to the consumption of resources, with defeasibility aspects, and
we discuss the design choices for the framework
Coalgebraic completeness-via-canonicity for distributive substructural logics
We prove strong completeness of a range of substructural logics with respect
to a natural poset-based relational semantics using a coalgebraic version of
completeness-via-canonicity. By formalizing the problem in the language of
coalgebraic logics, we develop a modular theory which covers a wide variety of
different logics under a single framework, and lends itself to further
extensions. Moreover, we believe that the coalgebraic framework provides a
systematic and principled way to study the relationship between resource models
on the semantics side, and substructural logics on the syntactic side.Comment: 36 page
Type Classes for Lightweight Substructural Types
Linear and substructural types are powerful tools, but adding them to
standard functional programming languages often means introducing extra
annotations and typing machinery. We propose a lightweight substructural type
system design that recasts the structural rules of weakening and contraction as
type classes; we demonstrate this design in a prototype language, Clamp.
Clamp supports polymorphic substructural types as well as an expressive
system of mutable references. At the same time, it adds little additional
overhead to a standard Damas-Hindley-Milner type system enriched with type
classes. We have established type safety for the core model and implemented a
type checker with type inference in Haskell.Comment: In Proceedings LINEARITY 2014, arXiv:1502.0441
When Structural Principles Hold Merely Locally
In substructural logics, structural principles may hold in some fragments of a consequence relation without holding globally. I look at this phenomenon in my preferred substructural logic, in which Weakening and Cut fail but which is supra-intuitionistic. I introduce object language operators that keep track of the admissibility of Weakening and of intuitionistic implications. I end with some ideas about local transitivity
On structures in hypergraphs of models of a theory
We define and study structural properties of hypergraphs of models of a
theory including lattice ones. Characterizations for the lattice properties of
hypergraphs of models of a theory, as well as for structures on sets of
isomorphism types of models of a theory, are given
Canonical formulas for k-potent commutative, integral, residuated lattices
Canonical formulas are a powerful tool for studying intuitionistic and modal
logics. Actually, they provide a uniform and semantic way to axiomatise all
extensions of intuitionistic logic and all modal logics above K4. Although the
method originally hinged on the relational semantics of those logics, recently
it has been completely recast in algebraic terms. In this new perspective
canonical formulas are built from a finite subdirectly irreducible algebra by
describing completely the behaviour of some operations and only partially the
behaviour of some others. In this paper we export the machinery of canonical
formulas to substructural logics by introducing canonical formulas for
-potent, commutative, integral, residuated lattices (-).
We show that any subvariety of - is axiomatised by canonical
formulas. The paper ends with some applications and examples.Comment: Some typo corrected and additional comments adde
- …
