2,801 research outputs found

    Resource-driven Substructural Defeasible Logic

    Full text link
    Linear Logic and Defeasible Logic have been adopted to formalise different features relevant to agents: consumption of resources, and reasoning with exceptions. We propose a framework to combine sub-structural features, corresponding to the consumption of resources, with defeasibility aspects, and we discuss the design choices for the framework

    Coalgebraic completeness-via-canonicity for distributive substructural logics

    Get PDF
    We prove strong completeness of a range of substructural logics with respect to a natural poset-based relational semantics using a coalgebraic version of completeness-via-canonicity. By formalizing the problem in the language of coalgebraic logics, we develop a modular theory which covers a wide variety of different logics under a single framework, and lends itself to further extensions. Moreover, we believe that the coalgebraic framework provides a systematic and principled way to study the relationship between resource models on the semantics side, and substructural logics on the syntactic side.Comment: 36 page

    Type Classes for Lightweight Substructural Types

    Full text link
    Linear and substructural types are powerful tools, but adding them to standard functional programming languages often means introducing extra annotations and typing machinery. We propose a lightweight substructural type system design that recasts the structural rules of weakening and contraction as type classes; we demonstrate this design in a prototype language, Clamp. Clamp supports polymorphic substructural types as well as an expressive system of mutable references. At the same time, it adds little additional overhead to a standard Damas-Hindley-Milner type system enriched with type classes. We have established type safety for the core model and implemented a type checker with type inference in Haskell.Comment: In Proceedings LINEARITY 2014, arXiv:1502.0441

    When Structural Principles Hold Merely Locally

    Get PDF
    In substructural logics, structural principles may hold in some fragments of a consequence relation without holding globally. I look at this phenomenon in my preferred substructural logic, in which Weakening and Cut fail but which is supra-intuitionistic. I introduce object language operators that keep track of the admissibility of Weakening and of intuitionistic implications. I end with some ideas about local transitivity

    On structures in hypergraphs of models of a theory

    Get PDF
    We define and study structural properties of hypergraphs of models of a theory including lattice ones. Characterizations for the lattice properties of hypergraphs of models of a theory, as well as for structures on sets of isomorphism types of models of a theory, are given

    Canonical formulas for k-potent commutative, integral, residuated lattices

    Full text link
    Canonical formulas are a powerful tool for studying intuitionistic and modal logics. Actually, they provide a uniform and semantic way to axiomatise all extensions of intuitionistic logic and all modal logics above K4. Although the method originally hinged on the relational semantics of those logics, recently it has been completely recast in algebraic terms. In this new perspective canonical formulas are built from a finite subdirectly irreducible algebra by describing completely the behaviour of some operations and only partially the behaviour of some others. In this paper we export the machinery of canonical formulas to substructural logics by introducing canonical formulas for kk-potent, commutative, integral, residuated lattices (kk-CIRL\mathsf{CIRL}). We show that any subvariety of kk-CIRL\mathsf{CIRL} is axiomatised by canonical formulas. The paper ends with some applications and examples.Comment: Some typo corrected and additional comments adde
    corecore