638,939 research outputs found
TEM investigation of YBa2Cu3O7 thin films on SrTiO3 bicrystals
YBa2Cu3O7 films in c-axis orientation on bicrystalline SrTiO3 substrates are investigated by TEM. The films and the substrates are examined in cross-section and in plane view. The grain boundary of the bicrystal substrate contains (110) faceted voids, but is otherwise straight on a nanometer scale. Contrary to this, the film grain boundary is not straight grain boundary can be up to 100 nm for a 100 nm thick film. The deviation from the intended position of the YBCO grain boundary can already occur at the film/substrate interface where it can be as much as ±50 nm
Conformational Dynamics of metallo-β-lactamase CcrA during Catalysis Investigated by Using DEER Spectroscopy
Previous crystallographic and mutagenesis studies have implicated the role of a position-conserved hairpin loop in the metallo-β-lactamases in substrate binding and catalysis. In an effort to probe the motion of that loop during catalysis, rapid-freeze-quench double electron–electron resonance (RFQ-DEER) spectroscopy was used to interrogate metallo-β-lactamase CcrA, which had a spin label at position 49 on the loop and spin labels (at positions 82, 126, or 233) 20–35 Å away from residue 49, during catalysis. At 10 ms after mixing, the DEER spectra show distance increases of 7, 10, and 13 Å between the spin label at position 49 and the spin labels at positions 82, 126, and 233, respectively. In contrast to previous hypotheses, these data suggest that the loop moves nearly 10 Å away from the metal center during catalysis and that the loop does not clamp down on the substrate during catalysis. This study demonstrates that loop motion during catalysis can be interrogated on the millisecond time scale
Two-probe theory of scanning tunneling microscopy of single molecules: Zn(II)-etioporphyrin on alumina
We explore theoretically the scanning tunneling microscopy of single
molecules on substrates using a framework of two local probes. This framework
is appropriate for studying electron flow in tip/molecule/substrate systems
where a thin insulating layer between the molecule and a conducting substrate
transmits electrons non-uniformly and thus confines electron transmission
between the molecule and substrate laterally to a nanoscale region
significantly smaller in size than the molecule. The tip-molecule coupling and
molecule-substrate coupling are treated on the same footing, as local probes to
the molecule, with electron flow modelled using the Lippmann-Schwinger Green
function scattering technique. STM images are simulated for various positions
of the stationary (substrate) probe below a Zn(II)-etioporphyrin I molecule. We
find that these images have a strong dependence on the substrate probe
position, indicating that electron flow can depend strongly on both tip
position and the location of the dominant molecule-substrate coupling.
Differences in the STM images are explained in terms of the molecular orbitals
that mediate electron flow in each case. Recent experimental results, showing
STM topographs of Zn(II)-etioporphyrin I on alumina/NiAl(110) to be strongly
dependent on which individual molecule on the substrate is being probed, are
explained using this model. A further experimental test of the model is also
proposed.Comment: Physical Review B, in pres
Kondo effect of Co adatoms on Ag monolayers on noble metal surfaces
The Kondo temperature of single Co adatoms on monolayers of Ag on Cu
and Au(111) is determined using Scanning Tunneling Spectroscopy. of Co on
a single monolayer of Ag on either substrate is essentially the same as that of
Co on a homogenous Ag(111) crystal. This gives strong evidence that the
interaction of surface Kondo impurities with the substrate is very local in
nature. By comparing found for Co on Cu, Ag, and Au (111)-surfaces we
show that the energy scale of the many-electron Kondo state is insensitive to
the properties of surface states and to the energetic position of the projected
bulk band edges.Comment: 4 pages, 3 figure
Electron transport across a quantum wire in the presence of electron leakage to a substrate
We investigate electron transport through a mono-atomic wire which is tunnel
coupled to two electrodes and also to the underlying substrate. The setup is
modeled by a tight-binding Hamiltonian and can be realized with a scanning
tunnel microscope (STM). The transmission of the wire is obtained from the
corresponding Green's function. If the wire is scanned by the contacting STM
tip, the conductance as a function of the tip position exhibits oscillations
which may change significantly upon increasing the number of wire atoms. Our
numerical studies reveal that the conductance depends strongly on whether or
not the substrate electrons are localized. As a further ubiquitous feature, we
observe the formation of charge oscillations.Comment: 7 pages, 7 figure
Transmission Through Carbon Nanotubes With Polyhedral Caps
We study electron transport between capped carbon nanotubes and a substrate,
and relate the transmission probability to the local density of states in the
cap. Our results show that the transmission probability mimics the behavior of
the density of states at all energies except those that correspond to localized
states in the cap. Close proximity of a substrate causes hybridization of the
localized state. As a result, new transmission paths open from the substrate to
nanotube continuum states via the localized states in the cap. Interference
between various transmission paths gives rise to antiresonances in the
transmission probability, with the minimum transmission equal to zero at
energies of the localized states. Defects in the nanotube that are placed close
to the cap cause resonances in the transmission probability, instead of
antiresonances, near the localized energy levels. Depending on the spatial
position of defects, these resonant states are capable of carrying a large
current. These results are relevant to carbon nanotube based studies of
molecular electronics and probe tip applications
Tuning ubiquinone position in biomimetic monolayer membranes
Artificial lipid bilayers have been extensively studied as models that mimic natural membranes (biomimetic membranes). Several attempts of biomimetic membranes inserting ubiquinone (UQ) have been performed to enlighten which the position of UQ in the lipid layer is, although obtaining contradictory results. In this work, pure components (DPPC and UQ) and DPPC:UQ mixtures have been studied using surface pressure-area isotherms and Langmuir-Blodgett (LB) films of the same compounds have been transferred onto solid substrates being topographically characterized on mica using atomic force microscopy and electrochemically on indium tin oxide slides. DPPC:UQ mixtures present less solid-like physical state than pure DPPC indicating a higher-order degree for the latter. UQ influences considerably DPPC during the fluid state, but it is mainly expelled after the phase transition at ˜˜ 26 mN·m^-1 for the 5:1 ratio and at ˜˜ 21 mN·m^-1 for lower UQ content. The thermodynamic studies confirm the stability of the DPPC:UQ mixtures before that event, although presenting a non-ideal behaviour. The results indicate that UQ position can be tuned by means of the surface pressure applied to obtain LB films and the UQ initial content. The UQ positions in the biomimetic membrane are distinguished by their formal potential: UQ located in “diving” position with the UQ placed in the DPPC matrix in direct contact with the electrode surface ( -0.04±0.02 V), inserted between lipid chains without contact to the substrate ( 0.00±0.01 V) and parallel to the substrate, above the lipid chains ( 0.09±0.02 V).Peer ReviewedPostprint (author's final draft
Silicon solar cell process development, fabrication, and analysis
Two large cast ingots were evaluated. Solar cell performance versus substrate position within the ingots was obtained and the results are presented. Dendritic web samples were analyzed in terms of structural defects, and efforts were made to correlate the data with the performance of solar cells made from the webs
- …
