1,005 research outputs found

    Relations among Some Low Rank Subspace Recovery Models

    Full text link
    Recovering intrinsic low dimensional subspaces from data distributed on them is a key preprocessing step to many applications. In recent years, there has been a lot of work that models subspace recovery as low rank minimization problems. We find that some representative models, such as Robust Principal Component Analysis (R-PCA), Robust Low Rank Representation (R-LRR), and Robust Latent Low Rank Representation (R-LatLRR), are actually deeply connected. More specifically, we discover that once a solution to one of the models is obtained, we can obtain the solutions to other models in closed-form formulations. Since R-PCA is the simplest, our discovery makes it the center of low rank subspace recovery models. Our work has two important implications. First, R-PCA has a solid theoretical foundation. Under certain conditions, we could find better solutions to these low rank models at overwhelming probabilities, although these models are non-convex. Second, we can obtain significantly faster algorithms for these models by solving R-PCA first. The computation cost can be further cut by applying low complexity randomized algorithms, e.g., our novel â„“2,1\ell_{2,1} filtering algorithm, to R-PCA. Experiments verify the advantages of our algorithms over other state-of-the-art ones that are based on the alternating direction method.Comment: Submitted to Neural Computatio

    Kernelized Low Rank Representation on Grassmann Manifolds

    Full text link
    Low rank representation (LRR) has recently attracted great interest due to its pleasing efficacy in exploring low-dimensional subspace structures embedded in data. One of its successful applications is subspace clustering which means data are clustered according to the subspaces they belong to. In this paper, at a higher level, we intend to cluster subspaces into classes of subspaces. This is naturally described as a clustering problem on Grassmann manifold. The novelty of this paper is to generalize LRR on Euclidean space onto an LRR model on Grassmann manifold in a uniform kernelized framework. The new methods have many applications in computer vision tasks. Several clustering experiments are conducted on handwritten digit images, dynamic textures, human face clips and traffic scene sequences. The experimental results show that the proposed methods outperform a number of state-of-the-art subspace clustering methods.Comment: 13 page

    Multi-View Spectral Clustering Tailored Tensor Low-Rank Representation

    Full text link
    This paper explores the problem of multi-view spectral clustering (MVSC) based on tensor low-rank modeling. Unlike the existing methods that all adopt an off-the-shelf tensor low-rank norm without considering the special characteristics of the tensor in MVSC, we design a novel structured tensor low-rank norm tailored to MVSC. Specifically, we explicitly impose a symmetric low-rank constraint and a structured sparse low-rank constraint on the frontal and horizontal slices of the tensor to characterize the intra-view and inter-view relationships, respectively. Moreover, the two constraints could be jointly optimized to achieve mutual refinement. On the basis of the novel tensor low-rank norm, we formulate MVSC as a convex low-rank tensor recovery problem, which is then efficiently solved with an augmented Lagrange multiplier based method iteratively. Extensive experimental results on five benchmark datasets show that the proposed method outperforms state-of-the-art methods to a significant extent. Impressively, our method is able to produce perfect clustering. In addition, the parameters of our method can be easily tuned, and the proposed model is robust to different datasets, demonstrating its potential in practice

    Kernelized LRR on Grassmann Manifolds for Subspace Clustering

    Full text link
    Low rank representation (LRR) has recently attracted great interest due to its pleasing efficacy in exploring low-dimensional sub- space structures embedded in data. One of its successful applications is subspace clustering, by which data are clustered according to the subspaces they belong to. In this paper, at a higher level, we intend to cluster subspaces into classes of subspaces. This is naturally described as a clustering problem on Grassmann manifold. The novelty of this paper is to generalize LRR on Euclidean space onto an LRR model on Grassmann manifold in a uniform kernelized LRR framework. The new method has many applications in data analysis in computer vision tasks. The proposed models have been evaluated on a number of practical data analysis applications. The experimental results show that the proposed models outperform a number of state-of-the-art subspace clustering methods

    Advancing Matrix Completion by Modeling Extra Structures beyond Low-Rankness

    Full text link
    A well-known method for completing low-rank matrices based on convex optimization has been established by Cand{\`e}s and Recht. Although theoretically complete, the method may not entirely solve the low-rank matrix completion problem. This is because the method captures only the low-rankness property which gives merely a rough constraint that the data points locate on some low-dimensional subspace, but generally ignores the extra structures which specify in more detail how the data points locate on the subspace. Whenever the geometric distribution of the data points is not uniform, the coherence parameters of data might be large and, accordingly, the method might fail even if the latent matrix we want to recover is fairly low-rank. To better handle non-uniform data, in this paper we propose a method termed Low-Rank Factor Decomposition (LRFD), which imposes an additional restriction that the data points must be represented as linear combinations of the bases in a dictionary constructed or learnt in advance. We show that LRFD can well handle non-uniform data, provided that the dictionary is configured properly: We mathematically prove that if the dictionary itself is low-rank then LRFD is immune to the coherence parameters which might be large on non-uniform data. This provides an elementary principle for learning the dictionary in LRFD and, naturally, leads to a practical algorithm for advancing matrix completion. Extensive experiments on randomly generated matrices and motion datasets show encouraging results.Comment: arXiv admin note: text overlap with arXiv:1404.403

    Robust Subspace Discovery by Block-diagonal Adaptive Locality-constrained Representation

    Full text link
    We propose a novel and unsupervised representation learning model, i.e., Robust Block-Diagonal Adaptive Locality-constrained Latent Representation (rBDLR). rBDLR is able to recover multi-subspace structures and extract the adaptive locality-preserving salient features jointly. Leveraging on the Frobenius-norm based latent low-rank representation model, rBDLR jointly learns the coding coefficients and salient features, and improves the results by enhancing the robustness to outliers and errors in given data, preserving local information of salient features adaptively and ensuring the block-diagonal structures of the coefficients. To improve the robustness, we perform the latent representation and adaptive weighting in a recovered clean data space. To force the coefficients to be block-diagonal, we perform auto-weighting by minimizing the reconstruction error based on salient features, constrained using a block-diagonal regularizer. This ensures that a strict block-diagonal weight matrix can be obtained and salient features will possess the adaptive locality preserving ability. By minimizing the difference between the coefficient and weights matrices, we can obtain a block-diagonal coefficients matrix and it can also propagate and exchange useful information between salient features and coefficients. Extensive results demonstrate the superiority of rBDLR over other state-of-the-art methods.Comment: accepted by ACM Multimedia 201

    Fast Subspace Clustering Based on the Kronecker Product

    Full text link
    Subspace clustering is a useful technique for many computer vision applications in which the intrinsic dimension of high-dimensional data is often smaller than the ambient dimension. Spectral clustering, as one of the main approaches to subspace clustering, often takes on a sparse representation or a low-rank representation to learn a block diagonal self-representation matrix for subspace generation. However, existing methods require solving a large scale convex optimization problem with a large set of data, with computational complexity reaches O(N^3) for N data points. Therefore, the efficiency and scalability of traditional spectral clustering methods can not be guaranteed for large scale datasets. In this paper, we propose a subspace clustering model based on the Kronecker product. Due to the property that the Kronecker product of a block diagonal matrix with any other matrix is still a block diagonal matrix, we can efficiently learn the representation matrix which is formed by the Kronecker product of k smaller matrices. By doing so, our model significantly reduces the computational complexity to O(kN^{3/k}). Furthermore, our model is general in nature, and can be adapted to different regularization based subspace clustering methods. Experimental results on two public datasets show that our model significantly improves the efficiency compared with several state-of-the-art methods. Moreover, we have conducted experiments on synthetic data to verify the scalability of our model for large scale datasets.Comment: 16 pages, 2 figure

    Multilayer Collaborative Low-Rank Coding Network for Robust Deep Subspace Discovery

    Full text link
    For subspace recovery, most existing low-rank representation (LRR) models performs in the original space in single-layer mode. As such, the deep hierarchical information cannot be learned, which may result in inaccurate recoveries for complex real data. In this paper, we explore the deep multi-subspace recovery problem by designing a multilayer architecture for latent LRR. Technically, we propose a new Multilayer Collabora-tive Low-Rank Representation Network model termed DeepLRR to discover deep features and deep subspaces. In each layer (>2), DeepLRR bilinearly reconstructs the data matrix by the collabo-rative representation with low-rank coefficients and projection matrices in the previous layer. The bilinear low-rank reconstruc-tion of previous layer is directly fed into the next layer as the input and low-rank dictionary for representation learning, and is further decomposed into a deep principal feature part, a deep salient feature part and a deep sparse error. As such, the coher-ence issue can be also resolved due to the low-rank dictionary, and the robustness against noise can also be enhanced in the feature subspace. To recover the sparse errors in layers accurately, a dynamic growing strategy is used, as the noise level will be-come smaller for the increase of layers. Besides, a neighborhood reconstruction error is also included to encode the locality of deep salient features by deep coefficients adaptively in each layer. Extensive results on public databases show that our DeepLRR outperforms other related models for subspace discovery and clustering.Comment: Accepted by the 24th European Conference on Artificial Intelligence (ECAI 2020

    Robust Subspace Clustering via Smoothed Rank Approximation

    Full text link
    Matrix rank minimizing subject to affine constraints arises in many application areas, ranging from signal processing to machine learning. Nuclear norm is a convex relaxation for this problem which can recover the rank exactly under some restricted and theoretically interesting conditions. However, for many real-world applications, nuclear norm approximation to the rank function can only produce a result far from the optimum. To seek a solution of higher accuracy than the nuclear norm, in this paper, we propose a rank approximation based on Logarithm-Determinant. We consider using this rank approximation for subspace clustering application. Our framework can model different kinds of errors and noise. Effective optimization strategy is developed with theoretical guarantee to converge to a stationary point. The proposed method gives promising results on face clustering and motion segmentation tasks compared to the state-of-the-art subspace clustering algorithms.Comment: Journal, code is availabl

    Learning Robust Representations for Computer Vision

    Full text link
    Unsupervised learning techniques in computer vision often require learning latent representations, such as low-dimensional linear and non-linear subspaces. Noise and outliers in the data can frustrate these approaches by obscuring the latent spaces. Our main goal is deeper understanding and new development of robust approaches for representation learning. We provide a new interpretation for existing robust approaches and present two specific contributions: a new robust PCA approach, which can separate foreground features from dynamic background, and a novel robust spectral clustering method, that can cluster facial images with high accuracy. Both contributions show superior performance to standard methods on real-world test sets.Comment: 8 pages, 7 page
    • …
    corecore