276 research outputs found

    Systematic DFT Frames: Principle, Eigenvalues Structure, and Applications

    Full text link
    Motivated by a host of recent applications requiring some amount of redundancy, frames are becoming a standard tool in the signal processing toolbox. In this paper, we study a specific class of frames, known as discrete Fourier transform (DFT) codes, and introduce the notion of systematic frames for this class. This is encouraged by a new application of frames, namely, distributed source coding that uses DFT codes for compression. Studying their extreme eigenvalues, we show that, unlike DFT frames, systematic DFT frames are not necessarily tight. Then, we come up with conditions for which these frames can be tight. In either case, the best and worst systematic frames are established in the minimum mean-squared reconstruction error sense. Eigenvalues of DFT frames and their subframes play a pivotal role in this work. Particularly, we derive some bounds on the extreme eigenvalues DFT subframes which are used to prove most of the results; these bounds are valuable independently

    Quantum simulations of Fermionic Hamiltonians with efficient encoding and ansatz schemes

    Full text link
    We propose a computational protocol for quantum simulations of Fermionic Hamiltonians on a quantum computer, enabling calculations which were previously not feasible with conventional encoding and ansatses of variational quantum eigensolvers (VQE). We combine a qubit-efficient encoding scheme mapping Slater determinants onto qubits with a modified qubit-coupled cluster ansatz and noise-mitigation techniques. Our strategy leads to a substantial improvement in the scaling of circuit gate counts and to a decrease in the number of required variational parameters, thus increasing the resilience to noise. We present results for spin defects of interest for quantum technologies, going beyond minimum models for the negatively charged nitrogen vacancy center in diamond and the double vacancy in 4H silicon carbide (4H-SiC) and tackling a defect as complex as negatively charged silicon vacancy in 4H-SiC for the first time.Comment: 36 pages, 8 figure

    Practical Quantum Chemistry on Near Term Quantum Computers

    Get PDF
    Solutions to the time-independent Schrödinger equation for molecular systems allow chemical properties to be studied without the direct need for the material. However, the dimension of this problem grows exponentially with the size of the quantum system under consideration making conventional treatment intractable. Quantum computers can efficiently represent and evolve quantum states. Their use offers a possible way to perform simulations on molecules previously impossible to model. However, given the constraints of current quantum computers even studying small systems is limited by the number of qubits, circuit depth and runtime of a chosen quantum algorithm. The work in this thesis is to explore and provide new tools to make chemical simulation more practical on near-term devices. First, the unitary partitioning measurement reduction strategy is explored. This reduces the runtime of the variational quantum eigensolver algorithm (VQE). We then apply this reduction technique to the contextual subspace method, which approximates a problem by introducing artificial symmetries based on the solution of noncontextual version of the problem that reduces the number of qubits required for simulation. We provide a modification to the original algorithm that makes an exponentially scaling part of the technique quadratic. Finally, we develop the projection-based embedding (PBE) technique to allow chemical systems to be studied using state-of-the-art classical methods in conjuncture with quantum computing protocols in a multiscale hierarchy. This allows molecular problems much larger than conventionally studied on quantum hardware to be approached

    Compressive Sensing in Communication Systems

    Get PDF

    Cellular, Wide-Area, and Non-Terrestrial IoT: A Survey on 5G Advances and the Road Towards 6G

    Full text link
    The next wave of wireless technologies is proliferating in connecting things among themselves as well as to humans. In the era of the Internet of things (IoT), billions of sensors, machines, vehicles, drones, and robots will be connected, making the world around us smarter. The IoT will encompass devices that must wirelessly communicate a diverse set of data gathered from the environment for myriad new applications. The ultimate goal is to extract insights from this data and develop solutions that improve quality of life and generate new revenue. Providing large-scale, long-lasting, reliable, and near real-time connectivity is the major challenge in enabling a smart connected world. This paper provides a comprehensive survey on existing and emerging communication solutions for serving IoT applications in the context of cellular, wide-area, as well as non-terrestrial networks. Specifically, wireless technology enhancements for providing IoT access in fifth-generation (5G) and beyond cellular networks, and communication networks over the unlicensed spectrum are presented. Aligned with the main key performance indicators of 5G and beyond 5G networks, we investigate solutions and standards that enable energy efficiency, reliability, low latency, and scalability (connection density) of current and future IoT networks. The solutions include grant-free access and channel coding for short-packet communications, non-orthogonal multiple access, and on-device intelligence. Further, a vision of new paradigm shifts in communication networks in the 2030s is provided, and the integration of the associated new technologies like artificial intelligence, non-terrestrial networks, and new spectra is elaborated. Finally, future research directions toward beyond 5G IoT networks are pointed out.Comment: Submitted for review to IEEE CS&
    • …
    corecore