2 research outputs found

    The Topology of Statistical Verifiability

    Full text link
    Topological models of empirical and formal inquiry are increasingly prevalent. They have emerged in such diverse fields as domain theory [1, 16], formal learning theory [18], epistemology and philosophy of science [10, 15, 8, 9, 2], statistics [6, 7] and modal logic [17, 4]. In those applications, open sets are typically interpreted as hypotheses deductively verifiable by true propositional information that rules out relevant possibilities. However, in statistical data analysis, one routinely receives random samples logically compatible with every statistical hypothesis. We bridge the gap between propositional and statistical data by solving for the unique topology on probability measures in which the open sets are exactly the statistically verifiable hypotheses. Furthermore, we extend that result to a topological characterization of learnability in the limit from statistical data.Comment: In Proceedings TARK 2017, arXiv:1707.0825

    Topological Subset Space Models for Public Announcements

    Full text link
    We reformulate a key definition given by Wang and Agotnes (2013) to provide semantics for public announcements in subset spaces. More precisely, we interpret the precondition for a public announcement of {\phi} to be the "local truth" of {\phi}, semantically rendered via an interior operator. This is closely related to the notion of {\phi} being "knowable". We argue that these revised semantics improve on the original and offer several motivating examples to this effect. A key insight that emerges is the crucial role of topological structure in this setting. Finally, we provide a simple axiomatization of the resulting logic and prove completeness.Comment: 21 pages, 2 figure
    corecore