4 research outputs found

    Submodularity and Optimality of Fusion Rules in Balanced Binary Relay Trees

    Full text link
    We study the distributed detection problem in a balanced binary relay tree, where the leaves of the tree are sensors generating binary messages. The root of the tree is a fusion center that makes the overall decision. Every other node in the tree is a fusion node that fuses two binary messages from its child nodes into a new binary message and sends it to the parent node at the next level. We assume that the fusion nodes at the same level use the same fusion rule. We call a string of fusion rules used at different levels a fusion strategy. We consider the problem of finding a fusion strategy that maximizes the reduction in the total error probability between the sensors and the fusion center. We formulate this problem as a deterministic dynamic program and express the solution in terms of Bellman's equations. We introduce the notion of stringsubmodularity and show that the reduction in the total error probability is a stringsubmodular function. Consequentially, we show that the greedy strategy, which only maximizes the level-wise reduction in the total error probability, is within a factor of the optimal strategy in terms of reduction in the total error probability

    Stochastic Sensor Scheduling via Distributed Convex Optimization

    Full text link
    In this paper, we propose a stochastic scheduling strategy for estimating the states of N discrete-time linear time invariant (DTLTI) dynamic systems, where only one system can be observed by the sensor at each time instant due to practical resource constraints. The idea of our stochastic strategy is that a system is randomly selected for observation at each time instant according to a pre-assigned probability distribution. We aim to find the optimal pre-assigned probability in order to minimize the maximal estimate error covariance among dynamic systems. We first show that under mild conditions, the stochastic scheduling problem gives an upper bound on the performance of the optimal sensor selection problem, notoriously difficult to solve. We next relax the stochastic scheduling problem into a tractable suboptimal quasi-convex form. We then show that the new problem can be decomposed into coupled small convex optimization problems, and it can be solved in a distributed fashion. Finally, for scheduling implementation, we propose centralized and distributed deterministic scheduling strategies based on the optimal stochastic solution and provide simulation examples.Comment: Proof errors and typos are fixed. One section is removed from last versio

    Directional Sensor Control: Heuristic Approaches

    Full text link
    corecore