353 research outputs found

    Budget Feasible Mechanisms for Experimental Design

    Full text link
    In the classical experimental design setting, an experimenter E has access to a population of nn potential experiment subjects i{1,...,n}i\in \{1,...,n\}, each associated with a vector of features xiRdx_i\in R^d. Conducting an experiment with subject ii reveals an unknown value yiRy_i\in R to E. E typically assumes some hypothetical relationship between xix_i's and yiy_i's, e.g., yiβxiy_i \approx \beta x_i, and estimates β\beta from experiments, e.g., through linear regression. As a proxy for various practical constraints, E may select only a subset of subjects on which to conduct the experiment. We initiate the study of budgeted mechanisms for experimental design. In this setting, E has a budget BB. Each subject ii declares an associated cost ci>0c_i >0 to be part of the experiment, and must be paid at least her cost. In particular, the Experimental Design Problem (EDP) is to find a set SS of subjects for the experiment that maximizes V(S) = \log\det(I_d+\sum_{i\in S}x_i\T{x_i}) under the constraint iSciB\sum_{i\in S}c_i\leq B; our objective function corresponds to the information gain in parameter β\beta that is learned through linear regression methods, and is related to the so-called DD-optimality criterion. Further, the subjects are strategic and may lie about their costs. We present a deterministic, polynomial time, budget feasible mechanism scheme, that is approximately truthful and yields a constant factor approximation to EDP. In particular, for any small δ>0\delta > 0 and ϵ>0\epsilon > 0, we can construct a (12.98, ϵ\epsilon)-approximate mechanism that is δ\delta-truthful and runs in polynomial time in both nn and loglogBϵδ\log\log\frac{B}{\epsilon\delta}. We also establish that no truthful, budget-feasible algorithms is possible within a factor 2 approximation, and show how to generalize our approach to a wide class of learning problems, beyond linear regression

    Constrained Submodular Maximization: Beyond 1/e

    Full text link
    In this work, we present a new algorithm for maximizing a non-monotone submodular function subject to a general constraint. Our algorithm finds an approximate fractional solution for maximizing the multilinear extension of the function over a down-closed polytope. The approximation guarantee is 0.372 and it is the first improvement over the 1/e approximation achieved by the unified Continuous Greedy algorithm [Feldman et al., FOCS 2011]

    Optimal Approximation Algorithms for Multi-agent Combinatorial Problems with Discounted Price Functions

    Full text link
    Submodular functions are an important class of functions in combinatorial optimization which satisfy the natural properties of decreasing marginal costs. The study of these functions has led to strong structural properties with applications in many areas. Recently, there has been significant interest in extending the theory of algorithms for optimizing combinatorial problems (such as network design problem of spanning tree) over submodular functions. Unfortunately, the lower bounds under the general class of submodular functions are known to be very high for many of the classical problems. In this paper, we introduce and study an important subclass of submodular functions, which we call discounted price functions. These functions are succinctly representable and generalize linear cost functions. In this paper we study the following fundamental combinatorial optimization problems: Edge Cover, Spanning Tree, Perfect Matching and Shortest Path, and obtain tight upper and lower bounds for these problems. The main technical contribution of this paper is designing novel adaptive greedy algorithms for the above problems. These algorithms greedily build the solution whist rectifying mistakes made in the previous steps

    Randomized Composable Core-sets for Distributed Submodular Maximization

    Full text link
    An effective technique for solving optimization problems over massive data sets is to partition the data into smaller pieces, solve the problem on each piece and compute a representative solution from it, and finally obtain a solution inside the union of the representative solutions for all pieces. This technique can be captured via the concept of {\em composable core-sets}, and has been recently applied to solve diversity maximization problems as well as several clustering problems. However, for coverage and submodular maximization problems, impossibility bounds are known for this technique \cite{IMMM14}. In this paper, we focus on efficient construction of a randomized variant of composable core-sets where the above idea is applied on a {\em random clustering} of the data. We employ this technique for the coverage, monotone and non-monotone submodular maximization problems. Our results significantly improve upon the hardness results for non-randomized core-sets, and imply improved results for submodular maximization in a distributed and streaming settings. In summary, we show that a simple greedy algorithm results in a 1/31/3-approximate randomized composable core-set for submodular maximization under a cardinality constraint. This is in contrast to a known O(logkk)O({\log k\over \sqrt{k}}) impossibility result for (non-randomized) composable core-set. Our result also extends to non-monotone submodular functions, and leads to the first 2-round MapReduce-based constant-factor approximation algorithm with O(n)O(n) total communication complexity for either monotone or non-monotone functions. Finally, using an improved analysis technique and a new algorithm PseudoGreedy\mathsf{PseudoGreedy}, we present an improved 0.5450.545-approximation algorithm for monotone submodular maximization, which is in turn the first MapReduce-based algorithm beating factor 1/21/2 in a constant number of rounds

    The Limitations of Optimization from Samples

    Full text link
    In this paper we consider the following question: can we optimize objective functions from the training data we use to learn them? We formalize this question through a novel framework we call optimization from samples (OPS). In OPS, we are given sampled values of a function drawn from some distribution and the objective is to optimize the function under some constraint. While there are interesting classes of functions that can be optimized from samples, our main result is an impossibility. We show that there are classes of functions which are statistically learnable and optimizable, but for which no reasonable approximation for optimization from samples is achievable. In particular, our main result shows that there is no constant factor approximation for maximizing coverage functions under a cardinality constraint using polynomially-many samples drawn from any distribution. We also show tight approximation guarantees for maximization under a cardinality constraint of several interesting classes of functions including unit-demand, additive, and general monotone submodular functions, as well as a constant factor approximation for monotone submodular functions with bounded curvature
    corecore