11,275 research outputs found

    Visual Comfort Assessment for Stereoscopic Image Retargeting

    Full text link
    In recent years, visual comfort assessment (VCA) for 3D/stereoscopic content has aroused extensive attention. However, much less work has been done on the perceptual evaluation of stereoscopic image retargeting. In this paper, we first build a Stereoscopic Image Retargeting Database (SIRD), which contains source images and retargeted images produced by four typical stereoscopic retargeting methods. Then, the subjective experiment is conducted to assess four aspects of visual distortion, i.e. visual comfort, image quality, depth quality and the overall quality. Furthermore, we propose a Visual Comfort Assessment metric for Stereoscopic Image Retargeting (VCA-SIR). Based on the characteristics of stereoscopic retargeted images, the proposed model introduces novel features like disparity range, boundary disparity as well as disparity intensity distribution into the assessment model. Experimental results demonstrate that VCA-SIR can achieve high consistency with subjective perception

    Information recovery from rank-order encoded images

    Get PDF
    The time to detection of a visual stimulus by the primate eye is recorded at 100 ā€“ 150ms. This near instantaneous recognition is in spite of the considerable processing required by the several stages of the visual pathway to recognise and react to a visual scene. How this is achieved is still a matter of speculation. Rank-order codes have been proposed as a means of encoding by the primate eye in the rapid transmission of the initial burst of information from the sensory neurons to the brain. We study the efficiency of rank-order codes in encoding perceptually-important information in an image. VanRullen and Thorpe built a model of the ganglion cell layers of the retina to simulate and study the viability of rank-order as a means of encoding by retinal neurons. We validate their model and quantify the information retrieved from rank-order encoded images in terms of the visually-important information recovered. Towards this goal, we apply the ā€˜perceptual information preservation algorithmā€™, proposed by Petrovic and Xydeas after slight modification. We observe a low information recovery due to losses suffered during the rank-order encoding and decoding processes. We propose to minimise these losses to recover maximum information in minimum time from rank-order encoded images. We first maximise information recovery by using the pseudo-inverse of the filter-bank matrix to minimise losses during rankorder decoding. We then apply the biological principle of lateral inhibition to minimise losses during rank-order encoding. In doing so, we propose the Filteroverlap Correction algorithm. To test the perfomance of rank-order codes in a biologically realistic model, we design and simulate a model of the foveal-pit ganglion cells of the retina keeping close to biological parameters. We use this as a rank-order encoder and analyse its performance relative to VanRullen and Thorpeā€™s retinal model
    • ā€¦
    corecore