14,810 research outputs found

    Extension and approximation of mm-subharmonic functions

    Full text link
    Let ΩCn\Omega\subset \mathbb C^n be a bounded domain, and let ff be a real-valued function defined on the whole topological boundary Ω\partial \Omega. The aim of this paper is to find a characterization of the functions ff which can be extended to the inside to a mm-subharmonic function under suitable assumptions on Ω\Omega. We shall do so by using a function algebraic approach with focus on mm-subharmonic functions defined on compact sets. We end this note with some remarks on approximation of mm-subharmonic functions

    Domination conditions for families of quasinearly subharmonic functions

    Full text link
    Domar has given a condition that ensures the existence of the largest subharmonic minorant of a given function. Later Rippon pointed out that a modification of Domar's argument gives in fact a better result. Using our previous, rather general and flexible, modification of Domar's original argument, we extend their results both to the subharmonic and quasinearly subharmonic settings.Comment: 8 page

    Bifurcation curves of subharmonic solutions

    Full text link
    We revisit a problem considered by Chow and Hale on the existence of subharmonic solutions for perturbed systems. In the analytic setting, under more general (weaker) conditions, we prove their results on the existence of bifurcation curves from the nonexistence to the existence of subharmonic solutions. In particular our results apply also when one has degeneracy to first order -- i.e. when the subharmonic Melnikov function vanishes identically. Moreover we can deal as well with the case in which degeneracy persists to arbitrarily high orders, in the sense that suitable generalisations to higher orders of the subharmonic Melnikov function are also identically zero. In general the bifurcation curves are not analytic, and even when they are smooth they can form cusps at the origin: we say in this case that the curves are degenerate as the corresponding tangent lines coincide. The technique we use is completely different from that of Chow and Hale, and it is essentially based on rigorous perturbation theory.Comment: 29 pages, 2 figure

    Melnikov theory to all orders and Puiseux series for subharmonic solutions

    Full text link
    We study the problem of subharmonic bifurcations for analytic systems in the plane with perturbations depending periodically on time, in the case in which we only assume that the subharmonic Melnikov function has at least one zero. If the order of zero is odd, then there is always at least one subharmonic solution, whereas if the order is even in general other conditions have to be assumed to guarantee the existence of subharmonic solutions. Even when such solutions exist, in general they are not analytic in the perturbation parameter. We show that they are analytic in a fractional power of the perturbation parameter. To obtain a fully constructive algorithm which allows us not only to prove existence but also to obtain bounds on the radius of analyticity and to approximate the solutions within any fixed accuracy, we need further assumptions. The method we use to construct the solution -- when this is possible -- is based on a combination of the Newton-Puiseux algorithm and the tree formalism. This leads to a graphical representation of the solution in terms of diagrams. Finally, if the subharmonic Melnikov function is identically zero, we show that it is possible to introduce higher order generalisations, for which the same kind of analysis can be carried out.Comment: 30 pages, 6 figure
    corecore