238 research outputs found

    Local And Global Colorability of Graphs

    Full text link
    It is shown that for any fixed c≥3c \geq 3 and rr, the maximum possible chromatic number of a graph on nn vertices in which every subgraph of radius at most rr is cc colorable is Θ~(n1r+1)\tilde{\Theta}\left(n ^ {\frac{1}{r+1}} \right) (that is, n1r+1n^\frac{1}{r+1} up to a factor poly-logarithmic in nn). The proof is based on a careful analysis of the local and global colorability of random graphs and implies, in particular, that a random nn-vertex graph with the right edge probability has typically a chromatic number as above and yet most balls of radius rr in it are 22-degenerate

    Counting triangles in some Ramsey graphs

    Get PDF
    We extend Goodman’s result on the cardinality of monochromatic triangles in a 2-colored complete graph to the case of bounding the number of triangles in the first color. We apply it to derive the upper bounds on some non-diagonal Ramsey numbers. In particular we show that R(K4 − e,K8) \u3c= 45

    Threshold phenomena in random graphs

    Get PDF
    In the 1950s, random graphs appeared for the first time in a result of the prolific hungarian mathematician Pál Erd\H{o}s. Since then, interest in random graph theory has only grown up until now. In its first stages, the basis of its theory were set, while they were mainly used in probability and combinatorics theory. However, with the new century and the boom of technologies like the World Wide Web, random graphs are even more important since they are extremely useful to handle problems in fields like network and communication theory. Because of this fact, nowadays random graphs are widely studied by the mathematical community around the world and new promising results have been recently achieved, showing an exciting future for this field. In this bachelor thesis, we focus our study on the threshold phenomena for graph properties within random graphs

    On the Spectrum of Wenger Graphs

    Full text link
    Let q=peq=p^e, where pp is a prime and e≥1e\geq 1 is an integer. For m≥1m\geq 1, let PP and LL be two copies of the (m+1)(m+1)-dimensional vector spaces over the finite field Fq\mathbb{F}_q. Consider the bipartite graph Wm(q)W_m(q) with partite sets PP and LL defined as follows: a point (p)=(p1,p2,…,pm+1)∈P(p)=(p_1,p_2,\ldots,p_{m+1})\in P is adjacent to a line [l]=[l1,l2,…,lm+1]∈L[l]=[l_1,l_2,\ldots,l_{m+1}]\in L if and only if the following mm equalities hold: li+1+pi+1=lip1l_{i+1} + p_{i+1}=l_{i}p_1 for i=1,…,mi=1,\ldots, m. We call the graphs Wm(q)W_m(q) Wenger graphs. In this paper, we determine all distinct eigenvalues of the adjacency matrix of Wm(q)W_m(q) and their multiplicities. We also survey results on Wenger graphs.Comment: 9 pages; accepted for publication to J. Combin. Theory, Series
    • …
    corecore