1,379 research outputs found

    Convex optimization over intersection of simple sets: improved convergence rate guarantees via an exact penalty approach

    Full text link
    We consider the problem of minimizing a convex function over the intersection of finitely many simple sets which are easy to project onto. This is an important problem arising in various domains such as machine learning. The main difficulty lies in finding the projection of a point in the intersection of many sets. Existing approaches yield an infeasible point with an iteration-complexity of O(1/ε2)O(1/\varepsilon^2) for nonsmooth problems with no guarantees on the in-feasibility. By reformulating the problem through exact penalty functions, we derive first-order algorithms which not only guarantees that the distance to the intersection is small but also improve the complexity to O(1/ε)O(1/\varepsilon) and O(1/ε)O(1/\sqrt{\varepsilon}) for smooth functions. For composite and smooth problems, this is achieved through a saddle-point reformulation where the proximal operators required by the primal-dual algorithms can be computed in closed form. We illustrate the benefits of our approach on a graph transduction problem and on graph matching

    An Infeasible-Point Subgradient Method Using Adaptive Approximate Projections

    Full text link
    We propose a new subgradient method for the minimization of nonsmooth convex functions over a convex set. To speed up computations we use adaptive approximate projections only requiring to move within a certain distance of the exact projections (which decreases in the course of the algorithm). In particular, the iterates in our method can be infeasible throughout the whole procedure. Nevertheless, we provide conditions which ensure convergence to an optimal feasible point under suitable assumptions. One convergence result deals with step size sequences that are fixed a priori. Two other results handle dynamic Polyak-type step sizes depending on a lower or upper estimate of the optimal objective function value, respectively. Additionally, we briefly sketch two applications: Optimization with convex chance constraints, and finding the minimum l1-norm solution to an underdetermined linear system, an important problem in Compressed Sensing.Comment: 36 pages, 3 figure

    Zero-Convex Functions, Perturbation Resilience, and Subgradient Projections for Feasibility-Seeking Methods

    Full text link
    The convex feasibility problem (CFP) is at the core of the modeling of many problems in various areas of science. Subgradient projection methods are important tools for solving the CFP because they enable the use of subgradient calculations instead of orthogonal projections onto the individual sets of the problem. Working in a real Hilbert space, we show that the sequential subgradient projection method is perturbation resilient. By this we mean that under appropriate conditions the sequence generated by the method converges weakly, and sometimes also strongly, to a point in the intersection of the given subsets of the feasibility problem, despite certain perturbations which are allowed in each iterative step. Unlike previous works on solving the convex feasibility problem, the involved functions, which induce the feasibility problem's subsets, need not be convex. Instead, we allow them to belong to a wider and richer class of functions satisfying a weaker condition, that we call "zero-convexity". This class, which is introduced and discussed here, holds a promise to solve optimization problems in various areas, especially in non-smooth and non-convex optimization. The relevance of this study to approximate minimization and to the recent superiorization methodology for constrained optimization is explained.Comment: Mathematical Programming Series A, accepted for publicatio

    Rate analysis of inexact dual first order methods: Application to distributed MPC for network systems

    Full text link
    In this paper we propose and analyze two dual methods based on inexact gradient information and averaging that generate approximate primal solutions for smooth convex optimization problems. The complicating constraints are moved into the cost using the Lagrange multipliers. The dual problem is solved by inexact first order methods based on approximate gradients and we prove sublinear rate of convergence for these methods. In particular, we provide, for the first time, estimates on the primal feasibility violation and primal and dual suboptimality of the generated approximate primal and dual solutions. Moreover, we solve approximately the inner problems with a parallel coordinate descent algorithm and we show that it has linear convergence rate. In our analysis we rely on the Lipschitz property of the dual function and inexact dual gradients. Further, we apply these methods to distributed model predictive control for network systems. By tightening the complicating constraints we are also able to ensure the primal feasibility of the approximate solutions generated by the proposed algorithms. We obtain a distributed control strategy that has the following features: state and input constraints are satisfied, stability of the plant is guaranteed, whilst the number of iterations for the suboptimal solution can be precisely determined.Comment: 26 pages, 2 figure

    Getting Feasible Variable Estimates From Infeasible Ones: MRF Local Polytope Study

    Full text link
    This paper proposes a method for construction of approximate feasible primal solutions from dual ones for large-scale optimization problems possessing certain separability properties. Whereas infeasible primal estimates can typically be produced from (sub-)gradients of the dual function, it is often not easy to project them to the primal feasible set, since the projection itself has a complexity comparable to the complexity of the initial problem. We propose an alternative efficient method to obtain feasibility and show that its properties influencing the convergence to the optimum are similar to the properties of the Euclidean projection. We apply our method to the local polytope relaxation of inference problems for Markov Random Fields and demonstrate its superiority over existing methods.Comment: 20 page, 4 figure

    Accelerating two projection methods via perturbations with application to Intensity-Modulated Radiation Therapy

    Full text link
    Constrained convex optimization problems arise naturally in many real-world applications. One strategy to solve them in an approximate way is to translate them into a sequence of convex feasibility problems via the recently developed level set scheme and then solve each feasibility problem using projection methods. However, if the problem is ill-conditioned, projection methods often show zigzagging behavior and therefore converge slowly. To address this issue, we exploit the bounded perturbation resilience of the projection methods and introduce two new perturbations which avoid zigzagging behavior. The first perturbation is in the spirit of kk-step methods and uses gradient information from previous iterates. The second uses the approach of surrogate constraint methods combined with relaxed, averaged projections. We apply two different projection methods in the unperturbed version, as well as the two perturbed versions, to linear feasibility problems along with nonlinear optimization problems arising from intensity-modulated radiation therapy (IMRT) treatment planning. We demonstrate that for all the considered problems the perturbations can significantly accelerate the convergence of the projection methods and hence the overall procedure of the level set scheme. For the IMRT optimization problems the perturbed projection methods found an approximate solution up to 4 times faster than the unperturbed methods while at the same time achieving objective function values which were 0.5 to 5.1% lower.Comment: Accepted for publication in Applied Mathematics & Optimizatio
    corecore