48 research outputs found

    Subband modeling for spoofing detection in automatic speaker verification

    Get PDF
    Spectrograms - time-frequency representations of audio signals - have found widespread use in neural network-based spoofing detection. While deep models are trained on the fullband spectrum of the signal, we argue that not all frequency bands are useful for these tasks. In this paper, we systematically investigate the impact of different subbands and their importance on replay spoofing detection on two benchmark datasets: ASVspoof 2017 v2.0 and ASVspoof 2019 PA. We propose a joint subband modelling framework that employs n different sub-networks to learn subband specific features. These are later combined and passed to a classifier and the whole network weights are updated during training. Our findings on the ASVspoof 2017 dataset suggest that the most discriminative information appears to be in the first and the last 1 kHz frequency bands, and the joint model trained on these two subbands shows the best performance outperforming the baselines by a large margin. However, these findings do not generalise on the ASVspoof 2019 PA dataset. This suggests that the datasets available for training these models do not reflect real world replay conditions suggesting a need for careful design of datasets for training replay spoofing countermeasures

    Audio Deepfake Detection: A Survey

    Full text link
    Audio deepfake detection is an emerging active topic. A growing number of literatures have aimed to study deepfake detection algorithms and achieved effective performance, the problem of which is far from being solved. Although there are some review literatures, there has been no comprehensive survey that provides researchers with a systematic overview of these developments with a unified evaluation. Accordingly, in this survey paper, we first highlight the key differences across various types of deepfake audio, then outline and analyse competitions, datasets, features, classifications, and evaluation of state-of-the-art approaches. For each aspect, the basic techniques, advanced developments and major challenges are discussed. In addition, we perform a unified comparison of representative features and classifiers on ASVspoof 2021, ADD 2023 and In-the-Wild datasets for audio deepfake detection, respectively. The survey shows that future research should address the lack of large scale datasets in the wild, poor generalization of existing detection methods to unknown fake attacks, as well as interpretability of detection results

    Voice biometric system security: Design and analysis of countermeasures for replay attacks.

    Get PDF
    PhD ThesisVoice biometric systems use automatic speaker veri cation (ASV) technology for user authentication. Even if it is among the most convenient means of biometric authentication, the robustness and security of ASV in the face of spoo ng attacks (or presentation attacks) is of growing concern and is now well acknowledged by the research community. A spoo ng attack involves illegitimate access to personal data of a targeted user. Replay is among the simplest attacks to mount | yet di cult to detect reliably and is the focus of this thesis. This research focuses on the analysis and design of existing and novel countermeasures for replay attack detection in ASV, organised in two major parts. The rst part of the thesis investigates existing methods for spoo ng detection from several perspectives. I rst study the generalisability of hand-crafted features for replay detection that show promising results on synthetic speech detection. I nd, however, that it is di cult to achieve similar levels of performance due to the acoustically di erent problem under investigation. In addition, I show how class-dependent cues in a benchmark dataset (ASVspoof 2017) can lead to the manipulation of class predictions. I then analyse the performance of several countermeasure models under varied replay attack conditions. I nd that it is di cult to account for the e ects of various factors in a replay attack: acoustic environment, playback device and recording device, and their interactions. Subsequently, I developed and studied a convolutional neural network (CNN) model that demonstrates comparable performance to the one that ranked rst in the ASVspoof 2017 challenge. Here, the experiment analyses what the CNN has learned for replay detection using a method from interpretable machine learning. The ndings suggest that the model highly attends at the rst few milliseconds of test recordings in order to make predictions. Then, I perform an in-depth analysis of a benchmark dataset (ASVspoof 2017) for spoo ng detection and demonstrate that any machine learning countermeasure model can still exploit the artefacts I identi ed in this dataset. The second part of the thesis studies the design of countermeasures for ASV, focusing on model robustness and avoiding dataset biases. First, I proposed an ensemble model combining shallow and deep machine learning methods for spoo ng detection, and then demonstrate its e ectiveness on the latest benchmark datasets (ASVspoof 2019). Next, I proposed the use of speech endpoint detection for reliable and robust model predictions on the ASVspoof 2017 dataset. For this, I created a publicly available collection of hand-annotations of speech endpoints for the same dataset, and new benchmark results for both frame-based and utterance-based countermeasures are also developed. I then proposed spectral subband modelling using CNNs for replay detection. My results indicate that models that learn subband-speci c information substantially outperform models trained on complete spectrograms. Finally, I proposed to use variational autoencoders | deep unsupervised generative models | as an alternative backend for spoo ng detection and demonstrate encouraging results when compared with the traditional Gaussian mixture mode

    Self-Attention and Hybrid Features for Replay and Deep-Fake Audio Detection

    Full text link
    Due to the successful application of deep learning, audio spoofing detection has made significant progress. Spoofed audio with speech synthesis or voice conversion can be well detected by many countermeasures. However, an automatic speaker verification system is still vulnerable to spoofing attacks such as replay or Deep-Fake audio. Deep-Fake audio means that the spoofed utterances are generated using text-to-speech (TTS) and voice conversion (VC) algorithms. Here, we propose a novel framework based on hybrid features with the self-attention mechanism. It is expected that hybrid features can be used to get more discrimination capacity. Firstly, instead of only one type of conventional feature, deep learning features and Mel-spectrogram features will be extracted by two parallel paths: convolution neural networks and a short-time Fourier transform (STFT) followed by Mel-frequency. Secondly, features will be concatenated by a max-pooling layer. Thirdly, there is a Self-attention mechanism for focusing on essential elements. Finally, ResNet and a linear layer are built to get the results. Experimental results reveal that the hybrid features, compared with conventional features, can cover more details of an utterance. We achieve the best Equal Error Rate (EER) of 9.67\% in the physical access (PA) scenario and 8.94\% in the Deep fake task on the ASVspoof 2021 dataset. Compared with the best baseline system, the proposed approach improves by 74.60\% and 60.05\%, respectively

    Audio compression-assisted feature extraction for voice replay attack detection

    Full text link
    Replay attack is one of the most effective and simplest voice spoofing attacks. Detecting replay attacks is challenging, according to the Automatic Speaker Verification Spoofing and Countermeasures Challenge 2021 (ASVspoof 2021), because they involve a loudspeaker, a microphone, and acoustic conditions (e.g., background noise). One obstacle to detecting replay attacks is finding robust feature representations that reflect the channel noise information added to the replayed speech. This study proposes a feature extraction approach that uses audio compression for assistance. Audio compression compresses audio to preserve content and speaker information for transmission. The missed information after decompression is expected to contain content- and speaker-independent information (e.g., channel noise added during the replay process). We conducted a comprehensive experiment with a few data augmentation techniques and 3 classifiers on the ASVspoof 2021 physical access (PA) set and confirmed the effectiveness of the proposed feature extraction approach. To the best of our knowledge, the proposed approach achieves the lowest EER at 22.71% on the ASVspoof 2021 PA evaluation set
    corecore