21,361 research outputs found

    Learning a Convolutional Neural Network for Non-uniform Motion Blur Removal

    Get PDF
    In this paper, we address the problem of estimating and removing non-uniform motion blur from a single blurry image. We propose a deep learning approach to predicting the probabilistic distribution of motion blur at the patch level using a convolutional neural network (CNN). We further extend the candidate set of motion kernels predicted by the CNN using carefully designed image rotations. A Markov random field model is then used to infer a dense non-uniform motion blur field enforcing motion smoothness. Finally, motion blur is removed by a non-uniform deblurring model using patch-level image prior. Experimental evaluations show that our approach can effectively estimate and remove complex non-uniform motion blur that is not handled well by previous approaches.Comment: This is a final version accepted by CVPR 201

    Joint Blind Motion Deblurring and Depth Estimation of Light Field

    Full text link
    Removing camera motion blur from a single light field is a challenging task since it is highly ill-posed inverse problem. The problem becomes even worse when blur kernel varies spatially due to scene depth variation and high-order camera motion. In this paper, we propose a novel algorithm to estimate all blur model variables jointly, including latent sub-aperture image, camera motion, and scene depth from the blurred 4D light field. Exploiting multi-view nature of a light field relieves the inverse property of the optimization by utilizing strong depth cues and multi-view blur observation. The proposed joint estimation achieves high quality light field deblurring and depth estimation simultaneously under arbitrary 6-DOF camera motion and unconstrained scene depth. Intensive experiment on real and synthetic blurred light field confirms that the proposed algorithm outperforms the state-of-the-art light field deblurring and depth estimation methods

    Video Frame Interpolation via Adaptive Separable Convolution

    Get PDF
    Standard video frame interpolation methods first estimate optical flow between input frames and then synthesize an intermediate frame guided by motion. Recent approaches merge these two steps into a single convolution process by convolving input frames with spatially adaptive kernels that account for motion and re-sampling simultaneously. These methods require large kernels to handle large motion, which limits the number of pixels whose kernels can be estimated at once due to the large memory demand. To address this problem, this paper formulates frame interpolation as local separable convolution over input frames using pairs of 1D kernels. Compared to regular 2D kernels, the 1D kernels require significantly fewer parameters to be estimated. Our method develops a deep fully convolutional neural network that takes two input frames and estimates pairs of 1D kernels for all pixels simultaneously. Since our method is able to estimate kernels and synthesizes the whole video frame at once, it allows for the incorporation of perceptual loss to train the neural network to produce visually pleasing frames. This deep neural network is trained end-to-end using widely available video data without any human annotation. Both qualitative and quantitative experiments show that our method provides a practical solution to high-quality video frame interpolation.Comment: ICCV 2017, http://graphics.cs.pdx.edu/project/sepconv

    Generalized Video Deblurring for Dynamic Scenes

    Full text link
    Several state-of-the-art video deblurring methods are based on a strong assumption that the captured scenes are static. These methods fail to deblur blurry videos in dynamic scenes. We propose a video deblurring method to deal with general blurs inherent in dynamic scenes, contrary to other methods. To handle locally varying and general blurs caused by various sources, such as camera shake, moving objects, and depth variation in a scene, we approximate pixel-wise kernel with bidirectional optical flows. Therefore, we propose a single energy model that simultaneously estimates optical flows and latent frames to solve our deblurring problem. We also provide a framework and efficient solvers to optimize the energy model. By minimizing the proposed energy function, we achieve significant improvements in removing blurs and estimating accurate optical flows in blurry frames. Extensive experimental results demonstrate the superiority of the proposed method in real and challenging videos that state-of-the-art methods fail in either deblurring or optical flow estimation.Comment: CVPR 2015 ora
    corecore