86,253 research outputs found
Second-order Temporal Pooling for Action Recognition
Deep learning models for video-based action recognition usually generate
features for short clips (consisting of a few frames); such clip-level features
are aggregated to video-level representations by computing statistics on these
features. Typically zero-th (max) or the first-order (average) statistics are
used. In this paper, we explore the benefits of using second-order statistics.
Specifically, we propose a novel end-to-end learnable feature aggregation
scheme, dubbed temporal correlation pooling that generates an action descriptor
for a video sequence by capturing the similarities between the temporal
evolution of clip-level CNN features computed across the video. Such a
descriptor, while being computationally cheap, also naturally encodes the
co-activations of multiple CNN features, thereby providing a richer
characterization of actions than their first-order counterparts. We also
propose higher-order extensions of this scheme by computing correlations after
embedding the CNN features in a reproducing kernel Hilbert space. We provide
experiments on benchmark datasets such as HMDB-51 and UCF-101, fine-grained
datasets such as MPII Cooking activities and JHMDB, as well as the recent
Kinetics-600. Our results demonstrate the advantages of higher-order pooling
schemes that when combined with hand-crafted features (as is standard practice)
achieves state-of-the-art accuracy.Comment: Accepted in the International Journal of Computer Vision (IJCV
MaskLab: Instance Segmentation by Refining Object Detection with Semantic and Direction Features
In this work, we tackle the problem of instance segmentation, the task of
simultaneously solving object detection and semantic segmentation. Towards this
goal, we present a model, called MaskLab, which produces three outputs: box
detection, semantic segmentation, and direction prediction. Building on top of
the Faster-RCNN object detector, the predicted boxes provide accurate
localization of object instances. Within each region of interest, MaskLab
performs foreground/background segmentation by combining semantic and direction
prediction. Semantic segmentation assists the model in distinguishing between
objects of different semantic classes including background, while the direction
prediction, estimating each pixel's direction towards its corresponding center,
allows separating instances of the same semantic class. Moreover, we explore
the effect of incorporating recent successful methods from both segmentation
and detection (i.e. atrous convolution and hypercolumn). Our proposed model is
evaluated on the COCO instance segmentation benchmark and shows comparable
performance with other state-of-art models.Comment: 10 pages including referenc
Block-Online Multi-Channel Speech Enhancement Using DNN-Supported Relative Transfer Function Estimates
This work addresses the problem of block-online processing for multi-channel
speech enhancement. Such processing is vital in scenarios with moving speakers
and/or when very short utterances are processed, e.g., in voice assistant
scenarios. We consider several variants of a system that performs beamforming
supported by DNN-based voice activity detection (VAD) followed by
post-filtering. The speaker is targeted through estimating relative transfer
functions between microphones. Each block of the input signals is processed
independently in order to make the method applicable in highly dynamic
environments. Owing to the short length of the processed block, the statistics
required by the beamformer are estimated less precisely. The influence of this
inaccuracy is studied and compared to the processing regime when recordings are
treated as one block (batch processing). The experimental evaluation of the
proposed method is performed on large datasets of CHiME-4 and on another
dataset featuring moving target speaker. The experiments are evaluated in terms
of objective and perceptual criteria (such as signal-to-interference ratio
(SIR) or perceptual evaluation of speech quality (PESQ), respectively).
Moreover, word error rate (WER) achieved by a baseline automatic speech
recognition system is evaluated, for which the enhancement method serves as a
front-end solution. The results indicate that the proposed method is robust
with respect to short length of the processed block. Significant improvements
in terms of the criteria and WER are observed even for the block length of 250
ms.Comment: 10 pages, 8 figures, 4 tables. Modified version of the article
accepted for publication in IET Signal Processing journal. Original results
unchanged, additional experiments presented, refined discussion and
conclusion
- …
