2,781 research outputs found
Fighting Authorship Linkability with Crowdsourcing
Massive amounts of contributed content -- including traditional literature,
blogs, music, videos, reviews and tweets -- are available on the Internet
today, with authors numbering in many millions. Textual information, such as
product or service reviews, is an important and increasingly popular type of
content that is being used as a foundation of many trendy community-based
reviewing sites, such as TripAdvisor and Yelp. Some recent results have shown
that, due partly to their specialized/topical nature, sets of reviews authored
by the same person are readily linkable based on simple stylometric features.
In practice, this means that individuals who author more than a few reviews
under different accounts (whether within one site or across multiple sites) can
be linked, which represents a significant loss of privacy.
In this paper, we start by showing that the problem is actually worse than
previously believed. We then explore ways to mitigate authorship linkability in
community-based reviewing. We first attempt to harness the global power of
crowdsourcing by engaging random strangers into the process of re-writing
reviews. As our empirical results (obtained from Amazon Mechanical Turk)
clearly demonstrate, crowdsourcing yields impressively sensible reviews that
reflect sufficiently different stylometric characteristics such that prior
stylometric linkability techniques become largely ineffective. We also consider
using machine translation to automatically re-write reviews. Contrary to what
was previously believed, our results show that translation decreases authorship
linkability as the number of intermediate languages grows. Finally, we explore
the combination of crowdsourcing and machine translation and report on the
results
CEAI: CCM based Email Authorship Identification Model
In this paper we present a model for email authorship identification (EAI) by
employing a Cluster-based Classification (CCM) technique. Traditionally,
stylometric features have been successfully employed in various authorship
analysis tasks; we extend the traditional feature-set to include some more
interesting and effective features for email authorship identification (e.g.
the last punctuation mark used in an email, the tendency of an author to use
capitalization at the start of an email, or the punctuation after a greeting or
farewell). We also included Info Gain feature selection based content features.
It is observed that the use of such features in the authorship identification
process has a positive impact on the accuracy of the authorship identification
task. We performed experiments to justify our arguments and compared the
results with other base line models. Experimental results reveal that the
proposed CCM-based email authorship identification model, along with the
proposed feature set, outperforms the state-of-the-art support vector machine
(SVM)-based models, as well as the models proposed by Iqbal et al. [1, 2]. The
proposed model attains an accuracy rate of 94% for 10 authors, 89% for 25
authors, and 81% for 50 authors, respectively on Enron dataset, while 89.5%
accuracy has been achieved on authors' constructed real email dataset. The
results on Enron dataset have been achieved on quite a large number of authors
as compared to the models proposed by Iqbal et al. [1, 2]
Drawing Elena Ferrante's Profile. Workshop Proceedings, Padova, 7 September 2017
Elena Ferrante is an internationally acclaimed Italian novelist whose real identity has been kept secret by E/O publishing house for more than 25 years. Owing to her popularity, major Italian and foreign newspapers have long tried to discover her real identity. However, only a few attempts have been made to foster a scientific debate on her work.
In 2016, Arjuna Tuzzi and Michele Cortelazzo led an Italian research team that conducted a preliminary study and collected a well-founded, large corpus of Italian novels comprising 150 works published in the last 30 years by 40 different authors. Moreover, they shared their data with a select group of international experts on authorship attribution, profiling, and analysis of textual data: Maciej Eder and Jan Rybicki (Poland), Patrick Juola (United States), Vittorio Loreto and his research team, Margherita Lalli and Francesca Tria (Italy), George Mikros (Greece), Pierre Ratinaud (France), and Jacques Savoy (Switzerland).
The chapters of this volume report the results of this endeavour that were first presented during the international workshop Drawing Elena Ferrante's Profile in Padua on 7 September 2017 as part of the 3rd IQLA-GIAT Summer School in Quantitative Analysis of Textual Data. The fascinating research findings suggest that Elena Ferrante\u2019s work definitely deserves \u201cmany hands\u201d as well as an extensive effort to understand her distinct writing style and the reasons for her worldwide success
- …
