19 research outputs found

    Style Transfer by Relaxed Optimal Transport and Self-Similarity

    Full text link
    Style transfer algorithms strive to render the content of one image using the style of another. We propose Style Transfer by Relaxed Optimal Transport and Self-Similarity (STROTSS), a new optimization-based style transfer algorithm. We extend our method to allow user-specified point-to-point or region-to-region control over visual similarity between the style image and the output. Such guidance can be used to either achieve a particular visual effect or correct errors made by unconstrained style transfer. In order to quantitatively compare our method to prior work, we conduct a large-scale user study designed to assess the style-content tradeoff across settings in style transfer algorithms. Our results indicate that for any desired level of content preservation, our method provides higher quality stylization than prior work. Code is available at https://github.com/nkolkin13/STROTSSComment: To Appear CVPR 2019, Webdemo Available at http://style.ttic.ed

    Manifold Alignment for Semantically Aligned Style Transfer

    Full text link
    Given a content image and a style image, the goal of style transfer is to synthesize an output image by transferring the target style to the content image. Currently, most of the methods address the problem with global style transfer, assuming styles can be represented by global statistics, such as Gram matrices or covariance matrices. In this paper, we make a different assumption that local semantically aligned (or similar) regions between the content and style images should share similar style patterns. Based on this assumption, content features and style features are seen as two sets of manifolds and a manifold alignment based style transfer (MAST) method is proposed. MAST is a subspace learning method which learns a common subspace of the content and style features. In the common subspace, content and style features with larger feature similarity or the same semantic meaning are forced to be close. The learned projection matrices are added with orthogonality constraints so that the mapping can be bidirectional, which allows us to project the content features into the common subspace, and then into the original style space. By using a pre-trained decoder, promising stylized images are obtained. The method is further extended to allow users to specify corresponding semantic regions between content and style images or using semantic segmentation maps as guidance. Extensive experiments show the proposed MAST achieves appealing results in style transfer.Comment: 10 page

    Wasserstein Style Transfer

    Full text link
    We propose Gaussian optimal transport for Image style transfer in an Encoder/Decoder framework. Optimal transport for Gaussian measures has closed forms Monge mappings from source to target distributions. Moreover interpolates between a content and a style image can be seen as geodesics in the Wasserstein Geometry. Using this insight, we show how to mix different target styles , using Wasserstein barycenter of Gaussian measures. Since Gaussians are closed under Wasserstein barycenter, this allows us a simple style transfer and style mixing and interpolation. Moreover we show how mixing different styles can be achieved using other geodesic metrics between gaussians such as the Fisher Rao metric, while the transport of the content to the new interpolate style is still performed with Gaussian OT maps. Our simple methodology allows to generate new stylized content interpolating between many artistic styles. The metric used in the interpolation results in different stylizations

    Arbitrary Style Transfer via Multi-Adaptation Network

    Full text link
    Arbitrary style transfer is a significant topic with research value and application prospect. A desired style transfer, given a content image and referenced style painting, would render the content image with the color tone and vivid stroke patterns of the style painting while synchronously maintaining the detailed content structure information. Style transfer approaches would initially learn content and style representations of the content and style references and then generate the stylized images guided by these representations. In this paper, we propose the multi-adaptation network which involves two self-adaptation (SA) modules and one co-adaptation (CA) module: the SA modules adaptively disentangle the content and style representations, i.e., content SA module uses position-wise self-attention to enhance content representation and style SA module uses channel-wise self-attention to enhance style representation; the CA module rearranges the distribution of style representation based on content representation distribution by calculating the local similarity between the disentangled content and style features in a non-local fashion. Moreover, a new disentanglement loss function enables our network to extract main style patterns and exact content structures to adapt to various input images, respectively. Various qualitative and quantitative experiments demonstrate that the proposed multi-adaptation network leads to better results than the state-of-the-art style transfer methods

    A Sliced Wasserstein Loss for Neural Texture Synthesis

    Full text link
    We address the problem of computing a textural loss based on the statistics extracted from the feature activations of a convolutional neural network optimized for object recognition (e.g. VGG-19). The underlying mathematical problem is the measure of the distance between two distributions in feature space. The Gram-matrix loss is the ubiquitous approximation for this problem but it is subject to several shortcomings. Our goal is to promote the Sliced Wasserstein Distance as a replacement for it. It is theoretically proven,practical, simple to implement, and achieves results that are visually superior for texture synthesis by optimization or training generative neural networks.Comment: 9 pages, 13 figures, under revie

    Drafting and Revision: Laplacian Pyramid Network for Fast High-Quality Artistic Style Transfer

    Full text link
    Artistic style transfer aims at migrating the style from an example image to a content image. Currently, optimization-based methods have achieved great stylization quality, but expensive time cost restricts their practical applications. Meanwhile, feed-forward methods still fail to synthesize complex style, especially when holistic global and local patterns exist. Inspired by the common painting process of drawing a draft and revising the details, we introduce a novel feed-forward method named Laplacian Pyramid Network (LapStyle). LapStyle first transfers global style patterns in low-resolution via a Drafting Network. It then revises the local details in high-resolution via a Revision Network, which hallucinates a residual image according to the draft and the image textures extracted by Laplacian filtering. Higher resolution details can be easily generated by stacking Revision Networks with multiple Laplacian pyramid levels. The final stylized image is obtained by aggregating outputs of all pyramid levels. %We also introduce a patch discriminator to better learn local patterns adversarially. Experiments demonstrate that our method can synthesize high quality stylized images in real time, where holistic style patterns are properly transferred.Comment: Accepted by CVPR 2021. Codes will be released soon on https://github.com/PaddlePaddle/PaddleGAN

    Interactive Neural Style Transfer with Artists

    Full text link
    We present interactive painting processes in which a painter and various neural style transfer algorithms interact on a real canvas. Understanding what these algorithms' outputs achieve is then paramount to describe the creative agency in our interactive experiments. We gather a set of paired painting-pictures images and present a new evaluation methodology based on the predictivity of neural style transfer algorithms. We point some algorithms' instabilities and show that they can be used to enlarge the diversity and pleasing oddity of the images synthesized by the numerous existing neural style transfer algorithms. This diversity of images was perceived as a source of inspiration for human painters, portraying the machine as a computational catalyst

    In the light of feature distributions: moment matching for Neural Style Transfer

    Full text link
    Style transfer aims to render the content of a given image in the graphical/artistic style of another image. The fundamental concept underlying NeuralStyle Transfer (NST) is to interpret style as a distribution in the feature space of a Convolutional Neural Network, such that a desired style can be achieved by matching its feature distribution. We show that most current implementations of that concept have important theoretical and practical limitations, as they only partially align the feature distributions. We propose a novel approach that matches the distributions more precisely, thus reproducing the desired style more faithfully, while still being computationally efficient. Specifically, we adapt the dual form of Central Moment Discrepancy (CMD), as recently proposed for domain adaptation, to minimize the difference between the target style and the feature distribution of the output image. The dual interpretation of this metric explicitly matches all higher-order centralized moments and is therefore a natural extension of existing NST methods that only take into account the first and second moments. Our experiments confirm that the strong theoretical properties also translate to visually better style transfer, and better disentangle style from semantic image content

    Frequency Domain Image Translation: More Photo-realistic, Better Identity-preserving

    Full text link
    Image-to-image translation aims at translating a particular style of an image to another. The synthesized images can be more photo-realistic and identity-preserving by decomposing the image into content and style in a disentangled manner. While existing models focus on designing specialized network architecture to separate the two components, this paper investigates how to explicitly constrain the content and style statistics of images. We achieve this goal by transforming the input image into high frequency and low frequency information, which correspond to the content and style, respectively. We regulate the frequency distribution from two aspects: a) a spatial level restriction to locally restrict the frequency distribution of images; b) a spectral level regulation to enhance the global consistency among images. On multiple datasets we show that the proposed approach consistently leads to significant improvements on top of various state-of-the-art image translation models.Comment: 13 page

    Unbalanced Feature Transport for Exemplar-based Image Translation

    Full text link
    Despite the great success of GANs in images translation with different conditioned inputs such as semantic segmentation and edge maps, generating high-fidelity realistic images with reference styles remains a grand challenge in conditional image-to-image translation. This paper presents a general image translation framework that incorporates optimal transport for feature alignment between conditional inputs and style exemplars in image translation. The introduction of optimal transport mitigates the constraint of many-to-one feature matching significantly while building up accurate semantic correspondences between conditional inputs and exemplars. We design a novel unbalanced optimal transport to address the transport between features with deviational distributions which exists widely between conditional inputs and exemplars. In addition, we design a semantic-activation normalization scheme that injects style features of exemplars into the image translation process successfully. Extensive experiments over multiple image translation tasks show that our method achieves superior image translation qualitatively and quantitatively as compared with the state-of-the-art.Comment: Accepted to CVPR 202
    corecore