3 research outputs found

    Studying the Plasticity in Deep Convolutional Neural Networks using Random Pruning

    Full text link
    Recently there has been a lot of work on pruning filters from deep convolutional neural networks (CNNs) with the intention of reducing computations.The key idea is to rank the filters based on a certain criterion (say, l1-norm) and retain only the top ranked filters. Once the low scoring filters are pruned away the remainder of the network is fine tuned and is shown to give performance comparable to the original unpruned network. In this work, we report experiments which suggest that the comparable performance of the pruned network is not due to the specific criterion chosen but due to the inherent plasticity of deep neural networks which allows them to recover from the loss of pruned filters once the rest of the filters are fine-tuned. Specifically we show counter-intuitive results wherein by randomly pruning 25-50% filters from deep CNNs we are able to obtain the same performance as obtained by using state-of-the-art pruning methods. We empirically validate our claims by doing an exhaustive evaluation with VGG-16 and ResNet-50. We also evaluate a real world scenario where a CNN trained on all 1000 ImageNet classes needs to be tested on only a small set of classes at test time (say, only animals). We create a new benchmark dataset from ImageNet to evaluate such class specific pruning and show that even here a random pruning strategy gives close to state-of-the-art performance. Unlike existing approaches which mainly focus on the task of image classification, in this work we also report results on object detection and image segmentation. We show that using a simple random pruning strategy we can achieve significant speed up in object detection (74% improvement in fps) while retaining the same accuracy as that of the original Faster RCNN model. Similarly we show that the performance of a pruned Segmentation Network (SegNet) is actually very similar to that of the original unpruned SegNet.Comment: To appear in the Journal of Machine Vision and Applications, Springer. This work is an extended version of our previous work arXiv:1801.10447, "Recovering from Random Pruning: On the Plasticity of Deep Convolutional Neural Networks", accepted at WACV 201

    Shapley Value as Principled Metric for Structured Network Pruning

    Full text link
    Structured pruning is a well-known technique to reduce the storage size and inference cost of neural networks. The usual pruning pipeline consists of ranking the network internal filters and activations with respect to their contributions to the network performance, removing the units with the lowest contribution, and fine-tuning the network to reduce the harm induced by pruning. Recent results showed that random pruning performs on par with other metrics, given enough fine-tuning resources. In this work, we show that this is not true on a low-data regime when fine-tuning is either not possible or not effective. In this case, reducing the harm caused by pruning becomes crucial to retain the performance of the network. First, we analyze the problem of estimating the contribution of hidden units with tools suggested by cooperative game theory and propose Shapley values as a principled ranking metric for this task. We compare with several alternatives proposed in the literature and discuss how Shapley values are theoretically preferable. Finally, we compare all ranking metrics on the challenging scenario of low-data pruning, where we demonstrate how Shapley values outperform other heuristics

    Pruning Deep Convolutional Neural Networks Architectures with Evolution Strategy

    Full text link
    Currently, Deep Convolutional Neural Networks (DCNNs) are used to solve all kinds of problems in the field of machine learning and artificial intelligence due to their learning and adaptation capabilities. However, most successful DCNN models have a high computational complexity making them difficult to deploy on mobile or embedded platforms. This problem has prompted many researchers to develop algorithms and approaches to help reduce the computational complexity of such models. One of them is called filter pruning, where convolution filters are eliminated to reduce the number of parameters and, consequently, the computational complexity of the given model. In the present work, we propose a novel algorithm to perform filter pruning by using Multi-Objective Evolution Strategy (ES) algorithm, called DeepPruningES. Our approach avoids the need for using any knowledge during the pruning procedure and helps decision-makers by returning three pruned CNN models with different trade-offs between performance and computational complexity. We show that DeepPruningES can significantly reduce a model's computational complexity by testing it on three DCNN architectures: Convolutional Neural Networks (CNNs), Residual Neural Networks (ResNets), and Densely Connected Neural Networks (DenseNets).Comment: Accepted at Information Science
    corecore