6,267 research outputs found

    Studying Paths of Participation in Viral Diffusion Process

    Full text link
    Authors propose a conceptual model of participation in viral diffusion process composed of four stages: awareness, infection, engagement and action. To verify the model it has been applied and studied in the virtual social chat environment settings. The study investigates the behavioral paths of actions that reflect the stages of participation in the diffusion and presents shortcuts, that lead to the final action, i.e. the attendance in a virtual event. The results show that the participation in each stage of the process increases the probability of reaching the final action. Nevertheless, the majority of users involved in the virtual event did not go through each stage of the process but followed the shortcuts. That suggests that the viral diffusion process is not necessarily a linear sequence of human actions but rather a dynamic system.Comment: In proceedings of the 4th International Conference on Social Informatics, SocInfo 201

    The specificity and robustness of long-distance connections in weighted, interareal connectomes

    Full text link
    Brain areas' functional repertoires are shaped by their incoming and outgoing structural connections. In empirically measured networks, most connections are short, reflecting spatial and energetic constraints. Nonetheless, a small number of connections span long distances, consistent with the notion that the functionality of these connections must outweigh their cost. While the precise function of these long-distance connections is not known, the leading hypothesis is that they act to reduce the topological distance between brain areas and facilitate efficient interareal communication. However, this hypothesis implies a non-specificity of long-distance connections that we contend is unlikely. Instead, we propose that long-distance connections serve to diversify brain areas' inputs and outputs, thereby promoting complex dynamics. Through analysis of five interareal network datasets, we show that long-distance connections play only minor roles in reducing average interareal topological distance. In contrast, areas' long-distance and short-range neighbors exhibit marked differences in their connectivity profiles, suggesting that long-distance connections enhance dissimilarity between regional inputs and outputs. Next, we show that -- in isolation -- areas' long-distance connectivity profiles exhibit non-random levels of similarity, suggesting that the communication pathways formed by long connections exhibit redundancies that may serve to promote robustness. Finally, we use a linearization of Wilson-Cowan dynamics to simulate the covariance structure of neural activity and show that in the absence of long-distance connections, a common measure of functional diversity decreases. Collectively, our findings suggest that long-distance connections are necessary for supporting diverse and complex brain dynamics.Comment: 18 pages, 8 figure

    Contextual Centrality: Going Beyond Network Structures

    Full text link
    Centrality is a fundamental network property which ranks nodes by their structural importance. However, structural importance may not suffice to predict successful diffusions in a wide range of applications, such as word-of-mouth marketing and political campaigns. In particular, nodes with high structural importance may contribute negatively to the objective of the diffusion. To address this problem, we propose contextual centrality, which integrates structural positions, the diffusion process, and, most importantly, nodal contributions to the objective of the diffusion. We perform an empirical analysis of the adoption of microfinance in Indian villages and weather insurance in Chinese villages. Results show that contextual centrality of the first-informed individuals has higher predictive power towards the eventual adoption outcomes than other standard centrality measures. Interestingly, when the product of diffusion rate pp and the largest eigenvalue λ1\lambda_1 is larger than one and diffusion period is long, contextual centrality linearly scales with eigenvector centrality. This approximation reveals that contextual centrality identifies scenarios where a higher diffusion rate of individuals may negatively influence the cascade payoff. Further simulations on the synthetic and real-world networks show that contextual centrality has the advantage of selecting an individual whose local neighborhood generates a high cascade payoff when pλ1<1p \lambda_1 < 1. Under this condition, stronger homophily leads to higher cascade payoff. Our results suggest that contextual centrality captures more complicated dynamics on networks and has significant implications for applications, such as information diffusion, viral marketing, and political campaigns

    Cascades: A view from Audience

    Full text link
    Cascades on online networks have been a popular subject of study in the past decade, and there is a considerable literature on phenomena such as diffusion mechanisms, virality, cascade prediction, and peer network effects. However, a basic question has received comparatively little attention: how desirable are cascades on a social media platform from the point of view of users? While versions of this question have been considered from the perspective of the producers of cascades, any answer to this question must also take into account the effect of cascades on their audience. In this work, we seek to fill this gap by providing a consumer perspective of cascade. Users on online networks play the dual role of producers and consumers. First, we perform an empirical study of the interaction of Twitter users with retweet cascades. We measure how often users observe retweets in their home timeline, and observe a phenomenon that we term the "Impressions Paradox": the share of impressions for cascades of size k decays much slower than frequency of cascades of size k. Thus, the audience for cascades can be quite large even for rare large cascades. We also measure audience engagement with retweet cascades in comparison to non-retweeted content. Our results show that cascades often rival or exceed organic content in engagement received per impression. This result is perhaps surprising in that consumers didn't opt in to see tweets from these authors. Furthermore, although cascading content is widely popular, one would expect it to eventually reach parts of the audience that may not be interested in the content. Motivated by our findings, we posit a theoretical model that focuses on the effect of cascades on the audience. Our results on this model highlight the balance between retweeting as a high-quality content selection mechanism and the role of network users in filtering irrelevant content
    • …
    corecore