4 research outputs found

    A Self-Supervised Feature Map Augmentation (FMA) Loss and Combined Augmentations Finetuning to Efficiently Improve the Robustness of CNNs

    Full text link
    Deep neural networks are often not robust to semantically-irrelevant changes in the input. In this work we address the issue of robustness of state-of-the-art deep convolutional neural networks (CNNs) against commonly occurring distortions in the input such as photometric changes, or the addition of blur and noise. These changes in the input are often accounted for during training in the form of data augmentation. We have two major contributions: First, we propose a new regularization loss called feature-map augmentation (FMA) loss which can be used during finetuning to make a model robust to several distortions in the input. Second, we propose a new combined augmentations (CA) finetuning strategy, that results in a single model that is robust to several augmentation types at the same time in a data-efficient manner. We use the CA strategy to improve an existing state-of-the-art method called stability training (ST). Using CA, on an image classification task with distorted images, we achieve an accuracy improvement of on average 8.94% with FMA and 8.86% with ST absolute on CIFAR-10 and 8.04% with FMA and 8.27% with ST absolute on ImageNet, compared to 1.98% and 2.12%, respectively, with the well known data augmentation method, while keeping the clean baseline performance.Comment: Accepted at ACM CSCS 2020 (8 pages, 4 figures

    Invariance Measures for Neural Networks

    Full text link
    Invariances in neural networks are useful and necessary for many tasks. However, the representation of the invariance of most neural network models has not been characterized. We propose measures to quantify the invariance of neural networks in terms of their internal representation. The measures are efficient and interpretable, and can be applied to any neural network model. They are also more sensitive to invariance than previously defined measures. We validate the measures and their properties in the domain of affine transformations and the CIFAR10 and MNIST datasets, including their stability and interpretability. Using the measures, we perform a first analysis of CNN models and show that their internal invariance is remarkably stable to random weight initializations, but not to changes in dataset or transformation. We believe the measures will enable new avenues of research in invariance representation
    corecore