7,370 research outputs found

    Triangular nanobeam photonic cavities in single crystal diamond

    Full text link
    Diamond photonics provides an attractive architecture to explore room temperature cavity quantum electrodynamics and to realize scalable multi-qubit computing. Here we review the present state of diamond photonic technology. The design, fabrication and characterization of a novel triangular cross section nanobeam cavity produced in a single crystal diamond is demonstrated. The present cavity design, based on a triangular cross section allows vertical confinement and better signal collection efficiency than that of slab-based nanocavities, and eliminates the need for a pre-existing membrane. The nanobeam is fabricated by Focused-Ion-Beam (FIB) patterning. The cavity is characterized by a confocal photoluminescence. The modes display quality factors of Q ~220 and are deviated in wavelength by only ~1.7nm from the NV- color center zero phonon line (ZPL). The measured results are found in good agreement with 3D Finite-Difference-Time-Domain (FDTD) calculations. A more advanced cavity design with Q=22,000 is modeled, showing the potential for high-Q implementations using the triangular cavity design. The prospects of this concept and its application to spin non-demolition measurement and quantum computing are discussed.Comment: 18 pages,7 figure

    Nonradiating Photonics with Resonant Dielectric Nanostructures

    Get PDF
    Nonradiating sources of energy have traditionally been studied in quantum mechanics and astrophysics, while receiving a very little attention in the photonics community. This situation has changed recently due to a number of pioneering theoretical studies and remarkable experimental demonstrations of the exotic states of light in dielectric resonant photonic structures and metasurfaces, with the possibility to localize efficiently the electromagnetic fields of high intensities within small volumes of matter. These recent advances underpin novel concepts in nanophotonics, and provide a promising pathway to overcome the problem of losses usually associated with metals and plasmonic materials for the efficient control of the light-matter interaction at the nanoscale. This review paper provides the general background and several snapshots of the recent results in this young yet prominent research field, focusing on two types of nonradiating states of light that both have been recently at the center of many studies in all-dielectric resonant meta-optics and metasurfaces: optical {\em anapoles} and photonic {\em bound states in the continuum}. We discuss a brief history of these states in optics, their underlying physics and manifestations, and also emphasize their differences and similarities. We also review some applications of such novel photonic states in both linear and nonlinear optics for the nanoscale field enhancement, a design of novel dielectric structures with high-QQ resonances, nonlinear wave mixing and enhanced harmonic generation, as well as advanced concepts for lasing and optical neural networks.Comment: 22 pages, 9 figures, review articl

    Optical cavities and waveguides in hyperuniform disordered photonic solids

    Full text link
    Using finite difference time domain and band structure computer simulations, we show that it is possible to construct optical cavities and waveguide architectures in hyperuniform disordered photonic solids that are unattainable in photonic crystals. The cavity modes can be classified according to the symmetry (monopole, dipole, quadrupole,etc.) of the confined electromagnetic wave pattern. Owing to the isotropy of the band gaps characteristic of hyperuniform disordered solids, high-quality waveguides with freeform geometries (e.g., arbitrary bending angles) can be constructed that have no analogue in periodic or quasiperiodic solids. These capabilities have implications for many photonic applications

    All-optical radiofrequency modulation of Anderson-localized modes

    Full text link
    All-optical modulation of light relies on exploiting intrinsic material nonlinearities. However, this optical control is rather challenging due to the weak dependence of the refractive index and absorption coefficients on the concentration of free carriers in standard semiconductors. To overcome this limitation, resonant structures with high spatial and spectral confinement are carefully designed to enhance the stored electromagnetic energy, thereby requiring lower excitation power to achieve significant nonlinear effects. Small mode-volume and high quality (Q)-factor cavities also offer an efficient coherent control of the light field and the targeted optical properties. Here, we report on optical resonances reaching Q - 10^5 induced by disorder on novel photonic/phononic crystal waveguides. At relatively low excitation powers (below 1 mW), these cavities exhibit nonlinear effects leading to periodic (up to - 35 MHz) oscillations of their resonant wavelength. Our system represents a test-bed to study the interplay between structural complexity and material nonlinearities and their impact on localization phenomena and introduces a novel functionality to the toolset of disordered photonics
    corecore