4,964 research outputs found

    An n-sided polygonal model to calculate the impact of cyber security events

    Full text link
    This paper presents a model to represent graphically the impact of cyber events (e.g., attacks, countermeasures) in a polygonal systems of n-sides. The approach considers information about all entities composing an information system (e.g., users, IP addresses, communication protocols, physical and logical resources, etc.). Every axis is composed of entities that contribute to the execution of the security event. Each entity has an associated weighting factor that measures its contribution using a multi-criteria methodology named CARVER. The graphical representation of cyber events is depicted as straight lines (one dimension) or polygons (two or more dimensions). Geometrical operations are used to compute the size (i.e, length, perimeter, surface area) and thus the impact of each event. As a result, it is possible to identify and compare the magnitude of cyber events. A case study with multiple security events is presented as an illustration on how the model is built and computed.Comment: 16 pages, 5 figures, 2 tables, 11th International Conference on Risks and Security of Internet and Systems, (CRiSIS 2016), Roscoff, France, September 201

    Know Your Enemy: Stealth Configuration-Information Gathering in SDN

    Full text link
    Software Defined Networking (SDN) is a network architecture that aims at providing high flexibility through the separation of the network logic from the forwarding functions. The industry has already widely adopted SDN and researchers thoroughly analyzed its vulnerabilities, proposing solutions to improve its security. However, we believe important security aspects of SDN are still left uninvestigated. In this paper, we raise the concern of the possibility for an attacker to obtain knowledge about an SDN network. In particular, we introduce a novel attack, named Know Your Enemy (KYE), by means of which an attacker can gather vital information about the configuration of the network. This information ranges from the configuration of security tools, such as attack detection thresholds for network scanning, to general network policies like QoS and network virtualization. Additionally, we show that an attacker can perform a KYE attack in a stealthy fashion, i.e., without the risk of being detected. We underline that the vulnerability exploited by the KYE attack is proper of SDN and is not present in legacy networks. To address the KYE attack, we also propose an active defense countermeasure based on network flows obfuscation, which considerably increases the complexity for a successful attack. Our solution offers provable security guarantees that can be tailored to the needs of the specific network under consideratio

    Building in web application security at the requirements stage : a tool for visualizing and evaluating security trade-offs : a thesis presented in partial fulfilment of the requirements for the degree of Master of Information Science in Information Systems at Massey University, Albany, New Zealand

    Get PDF
    One dimension of Internet security is web application security. The purpose of this Design-science study was to design, build and evaluate a computer-based tool to support security vulnerability and risk assessment in the early stages of web application design. The tool facilitates risk assessment by managers and helps developers to model security requirements using an interactive tree diagram. The tool calculates residual risk for each component of a web application and for the application overall so developers are provided with better information for making decisions about which countermeasures to implement given limited resources tor doing so. The tool supports taking a proactive approach to building in web application security at the requirements stage as opposed to the more common reactive approach of putting countermeasures in place after an attack and loss have been incurred. The primary contribution of the proposed tool is its ability to make known security-related information (e.g. known vulnerabilities, attacks and countermeasures) more accessible to developers who are not security experts and to translate lack of security measures into an understandable measure of relative residual risk. The latter is useful for managers who need to prioritize security spending. Keywords: web application security, security requirements modelling, attack trees, threat trees, risk assessment

    Attack vectors against social networking systems : the Facebook example

    Get PDF
    Social networking systems (SNS&rsquo;s) such as Facebook are an ever evolving and developing means of social interaction, which is not only being used to disseminate information to family, friends and colleagues but as a way of meeting and interacting with &quot;strangers&quot; through the advent of a large number of social applications. The attractiveness of such software has meant a dramatic increase in the number of frequent users of SNS&rsquo;s and the threats which were once common to the Internet have now been magnified, intensified and altered as the potential for criminal behaviour on SNS&rsquo;s increases. Social networking sites including Facebook contain a vast amount of personal information, that if obtained could be used for other purposes or to carry out other crimes such as identity theft. This paper will focus on the security threats posed to social networking sites and gain an understanding of these risks by using a security approach known as &ldquo;attack trees&rdquo;. This will allow for a greater understanding of the complexity associated with protecting Social Networking systems with a particular focus on Facebook.<br /
    • …
    corecore