2,082 research outputs found

    Study of Switched Max-Link Relay Selection for Cooperative Multiple-Antenna Systems

    Full text link
    In this work, we present a switched relaying framework for multiple-input multiple-output (MIMO) relay systems where a source node may transmit directly to a destination node or aided by relays. We also investigate relay selection techniques for the proposed switched relaying framework, whose relays are equipped with buffers. In particular, we develop a novel relay selection protocol based on switching and the selection of the best link, denoted as Switched Max-Link. We then propose the Maximum Minimum Distance (MMD) relay selection criterion for MIMO systems, which is based on the optimal Maximum Likelihood (ML) principle and can provide significant performance gains over other criteria, along with algorithms that are incorporated into the proposed Switched Max-Link protocol. An analysis of the proposed Switched Max-Link protocol and the MMD relay selection criterion in terms of computational cost, pairwise error probability, sum-rate and average delay is carried out. Simulations show that Switched Max-Link using the MMD criterion outperforms previous works in terms of sum-rate, pairwise error probability, average delay and bit error rate.Comment: 15 pages, 13 figure

    Study of Switched Max-Link Buffer-Aided Relay Selection for Cooperative MIMO Systems

    Full text link
    In this paper, we investigate relay selection for cooperative multiple-antenna systems that are equipped with buffers, which increase the reliability of wireless links. In particular, we present a novel relay selection technique based on switching and the Max-Link protocol that is named Switched Max-Link. We also introduce a novel relay selection criterion based on the maximum likelihood (ML) principle denoted maximum minimum distance that is incorporated into. Simulations are then employed to evaluate the performance of the proposed and existing techniques.Comment: 8 pages, 3 figures. arXiv admin note: text overlap with arXiv:1707.0095

    Study of Buffer-Aided Space-Time Coding for Multiple-Antenna Cooperative Wireless Networks

    Full text link
    In this work we propose an adaptive buffer-aided space-time coding scheme for cooperative wireless networks. A maximum likelihood receiver and adjustable code vectors are considered subject to a power constraint with an amplify-and-forward cooperation strategy. Each multiple-antenna relay is equipped with a buffer and is capable of storing the received symbols before forwarding them to the destination. We also present an adaptive relay selection and optimization algorithm, in which the instantaneous signal to noise ratio in each link is calculated and compared at the destination. An adjustable code vector obtained by a feedback channel at each relay is employed to form a space-time coded vector which achieves a higher coding gain than standard schemes. A stochastic gradient algorithm is developed to compute the parameters of the adjustable code vector with reduced computational complexity. Simulation results show that the proposed buffer-aided scheme and algorithm obtain performance gains over existing schemes.Comment: 7 pages, 2 figure

    Study of Relay Selection for Physical-Layer Security in Buffer-Aided Relay Networks Based on the Secrecy Rate Criterion

    Full text link
    In this paper, we investigate an opportunistic relay and jammer scheme along with relay selection algorithms based on the secrecy rate criterion in multiple-input multiple-output buffer-aided down link relay networks, which consist of one source, a number of relay nodes, legitimate users and eavesdroppers, with the constraints of physical layer security. The opportunistic relay and jammer scheme is employed to improve the transmission rate and different relay selection policies are performed to achieve better secrecy rate with the consideration of eavesdroppers. Among all the investigated relay selection policies, a relay selection policy which is developed to maximize the secrecy rate based on exhaustive searches outperforms other relay selection policies in terms of secrecy rate. Based on the secrecy rate criterion, we develop a relay selection algorithm without knowledge of the channels of the eavesdroppers. We also devise a greedy search algorithm based on the secrecy rate criterion to reduce the computational complexity of the exhaustive search technique. Simulations show the superiority of the secrecy rate criterion over competing approaches.Comment: 6 pages, 3 figure

    Higher Order Statistics in Switched Diversity Systems

    Full text link
    We analyze the level crossing rate (LCR) and the average fade duration of the output signal-to-noise-ratio (SNR) in generalized switched diversity systems. By using a common approach, we study these higher order statistics for two different kinds of configurations: (1) Colocated diversity, i.e. receiver equipped with multiple antennas, and (2) Distributed diversity, i.e. relaying link with multiple single-antenna threshold-based decode-and-forward (DF) relays. In both cases, we consider the switched diversity combining strategies Selection Combining and Switch \& Stay Combining (SSC). Whenever using threshold-based techniques such as DF or SSC, the output SNR is a discontinuous random process and hence classic Rice approach to calculate the LCR is not applicable. Thus, we use an alternative formulation in terms of the one and two-dimensional cumulative distribution functions of the output SNR. Our results are general, and hold for any arbitrary distribution of fading at the different diversity branches. Moreover, we develop a general asymptotic framework to calculate these higher order statistics in high mean SNR environments which only needs of the univariate probability density function

    Study of Opportunistic Cooperation Techniques using Jamming and Relays for Physical-Layer Security in Buffer-aided Relay Networks

    Full text link
    In this paper, we investigate opportunistic relay and jammer cooperation schemes in multiple-input multiple-output (MIMO) buffer-aided relay networks. The network consists of one source, an arbitrary number of relay nodes, legitimate users and eavesdroppers, with the constraints of physical layer security. We propose an algorithm to select a set of relay nodes to enhance the legitimate users' transmission and another set of relay nodes to perform jamming of the eavesdroppers. With Inter-Relay interference (IRI) taken into account, interference cancellation can be implemented to assist the transmission of the legitimate users. Secondly, IRI can also be used to further increase the level of harm of the jamming signal to the eavesdroppers. By exploiting the fact that the jamming signal can be stored at the relay nodes, we also propose a hybrid algorithm to set a signal-to-interference and noise ratio (SINR) threshold at the node to determine the type of signal stored at the relay node. With this separation, the signals with high SINR are delivered to the users as conventional relay systems and the low SINR performance signals are stored as potential jamming signals. Simulation results show that the proposed techniques obtain a significant improvement in secrecy rate over previously reported algorithms.Comment: 8 pages, 3 figure

    Resource Allocation and Interference Mitigation Techniques for Cooperative Multi-Antenna and Spread Spectrum Wireless Networks

    Full text link
    This chapter presents joint interference suppression and power allocation algorithms for DS-CDMA and MIMO networks with multiple hops and amplify-and-forward and decode-and-forward (DF) protocols. A scheme for joint allocation of power levels across the relays and linear interference suppression is proposed. We also consider another strategy for joint interference suppression and relay selection that maximizes the diversity available in the system. Simulations show that the proposed cross-layer optimization algorithms obtain significant gains in capacity and performance over existing schemes.Comment: 10 figures. arXiv admin note: substantial text overlap with arXiv:1301.009

    Adaptive Full-Duplex Jamming Receiver for Secure D2D Links in Random Networks

    Full text link
    Device-to-device (D2D) communication raises new transmission secrecy protection challenges, since conventional physical layer security approaches, such as multiple antennas and cooperation techniques, are invalid due to its resource/size constraints. The full-duplex (FD) jamming receiver, which radiates jamming signals to confuse eavesdroppers when receiving the desired signal simultaneously, is a promising candidate. Unlike existing endeavors that assume the FD jamming receiver always improves the secrecy performance compared with the half-duplex (HD) receiver, we show that this assumption highly depends on the instantaneous residual self-interference cancellation level and may be invalid. We propose an adaptive jamming receiver operating in a switched FD/HD mode for a D2D link in random networks. Subject to the secrecy outage probability constraint, we optimize the transceiver parameters, such as signal/jamming powers, secrecy rates and mode switch criteria, to maximize the secrecy throughput. Most of the optimization operations are taken off-line and only very limited on-line calculations are required to make the scheme with low complexity. Furthermore, some interesting insights are provided, such as the secrecy throughput is a quasi-concave function. Numerical results are demonstrated to verify our theoretical findings, and to show its superiority compared with the receiver operating in the FD or HD mode only

    Study of Interference Cancellation and Relay Selection Algorithms Using Greedy Techniques for Cooperative DS-CDMA Systems

    Full text link
    In this work, we study interference cancellation techniques and a multi-relay selection algorithm based on greedy methods for the uplink of cooperative direct-sequence code-division multiple access (DS-CDMA) systems. We first devise low-cost list-based successive interference cancellation (GL-SIC) and parallel interference cancellation (GL-PIC) algorithms with RAKE receivers as the front-end that can approach the maximum likelihood detector performance and be used at both the relays and the destination of cooperative systems. Unlike prior art, the proposed GL-SIC and GL-PIC algorithms exploit the Euclidean distance between users of interest and the potential nearest constellation point with a chosen threshold in order to build an effective list of detection candidates. A low-complexity multi-relay selection algorithm based on greedy techniques that can approach the performance of an exhaustive search is also proposed. A cross-layer design strategy that brings together the proposed multiuser detection algorithms and the greedy relay selection is then developed along with an analysis of the proposed techniques. Simulations show an excellent bit error rate performance of the proposed detection and relay selection algorithms as compared to existing techniques.Comment: 6 figures in Eurasip Journal on Wireless Communications and Networking, 2016. arXiv admin note: text overlap with arXiv:1410.0444, arXiv:1406.023

    Study of Robust Distributed Beamforming Based on Cross-Correlation and Subspace Projection Techniques

    Full text link
    In this work, we present a novel robust distributed beamforming (RDB) approach to mitigate the effects of channel errors on wireless networks equipped with relays based on the exploitation of the cross-correlation between the received data from the relays at the destination and the system output. The proposed RDB method, denoted cross-correlation and subspace projection (CCSP) RDB, considers a total relay transmit power constraint in the system and the objective of maximizing the output signal-to-interference-plus-noise ratio (SINR). The relay nodes are equipped with an amplify-and-forward (AF) protocol and we assume that the channel state information (CSI) is imperfectly known at the relays and there is no direct link between the sources and the destination. The CCSP does not require any costly optimization procedure and simulations show an excellent performance as compared to previously reported algorithms.Comment: 3 figures, 7 pages. arXiv admin note: text overlap with arXiv:1707.00953
    • …
    corecore