830 research outputs found

    Search for decay modes of heavy and superheavy nuclei

    Get PDF
    Spontaneous fission (SF) with a new formula based on a liquid drop model is proposed and used in the calculation of the SF half-lives of heavy and superheavy nuclei (Z = 90-120). The predicted half-lives are in agreement with the experimental SF half-lives. The half-lives of alpha decay (AD) for the same nuclei are obtained by using the Wentzel-Kramers-Brillouin (WKB) method together with Bohr-Sommerfeld (BS) quantization condition considering the isospin-dependent effects for the cosh potential. The decay modes and branching ratios of superheavy nuclei (Z = 104-118) with experimental decay modes are obtained, and the modes are compared with the experimental ones and with the predictions found in the literature. Although some nuclei have predicted decay modes that are different from their experimental decay modes, decay modes same as the experimental ones are predicted for many nuclei. The SF and AD half-lives, branching ratios, and decay modes are obtained for superheavy nuclei (Z = 119-120) with unknown decay modes and compared with the predictions obtained in a previous study. The present results provide useful information for future experimental studies performed on both the AD and SF of superheavy nuclei.Turkish Science and Research Council (TUBITAK) [118R028]Supported by the Turkish Science and Research Council (TUBITAK) with Grant Number 118R02

    Theoretical studies on structural and decay properties of Z=119Z=119 superheavy nuclei

    Full text link
    In this manuscript, we analyze the structural properties of Z=119Z=119 superheavy nuclei in the mass range of 284 \le A \le 375 within the framework of deformed relativistic mean field theory (RMF) and calculate the binding energy, radii, quadrupole deformation parameter, separation energies and density profile. Further, a competition between possible decay modes such as α\alpha-decay, β\beta-decay and spontaneous fission (SF) of the isotopic chain of Z=119Z=119 superheavy nuclei under study is systematically analyzed within self-consistent relativistic mean field model. Moreover, our analysis confirmed that α\alpha-decay is restricted within the mass range 284 \leq A \leq 296 and thus being the dominant decay channel in this mass range. However, for the mass range 297 \leq A \leq 375 the nuclei are unable to survive fission and hence SF is the principal mode of decay for these isotopes. There is no possibility of β\beta-decay for the considered isotopic chain. In addition, we forecasted the mode of decay 284296^{284-296}119 as one α\alpha chain from 284^{284}119 and 296^{296}119, two consistent α\alpha chains from 285^{285}119 and 295^{295}119, three consistent α\alpha chains from 286^{286}119 and 294^{294}119, four consistent alpha chains from 287^{287}119, six consistent alpha chains from 288293^{288-293}119. Also from our analysis we inferred that for the isotopes 264266,269^{264-266,269}Bh both α\alpha decay and SF are equally competent and can decay via either of these two modes. Thus, such studies can be of great significance to the experimentalists in very near future for synthesizing Z=119Z=119 superheavy nuclei.Comment: 14 pages, 6 figures. arXiv admin note: text overlap with arXiv:1611.00232, arXiv:1704.0315

    Nuclei embedded in an electron gas

    Full text link
    The properties of nuclei embedded in an electron gas are studied within the relativistic mean-field approach. These studies are relevant for nuclear properties in astrophysical environments such as neutron-star crusts and supernova explosions. The electron gas is treated as a constant background in the Wigner-Seitz cell approximation. We investigate the stability of nuclei with respect to alpha and beta decay. Furthermore, the influence of the electronic background on spontaneous fission of heavy and superheavy nuclei is analyzed. We find that the presence of the electrons leads to stabilizing effects for both α\alpha decay and spontaneous fission for high electron densities. Furthermore, the screening effect shifts the proton dripline to more proton-rich nuclei, and the stability line with respect to beta decay is shifted to more neutron-rich nuclei. Implications for the creation and survival of very heavy nuclear systems are discussed.Comment: 35 pages, latex+ep

    Quasiparticle-vibration coupling in relativistic framework: shell structure of Z=120 isotopes

    Full text link
    For the first time, the shell structure of open-shell nuclei is described in a fully self-consistent extension of the covariant energy density functional theory. The approach implies quasiparticle-vibration coupling for superfluid systems. One-body Dyson equation formulated in the doubled quasiparticle space of Dirac spinors is solved for nucleonic propagators in tin isotopes which represent the reference case: the obtained energies of the single-quasiparticle levels and their spectroscopic amplitudes are in agreement with data. The model is applied to describe the shell evolution in a chain of superheavy isotopes 292,296,300,304^{292,296,300,304}120 and finds a rather stable proton spherical shell closure at Z = 120. An interplay of the pairing correlations and the quasiparticle-phonon coupling gives rise for a smooth evolution of the neutron shell gap between N = 172 and N = 184 neutron numbers. Vibrational corrections to the alpha decay energies reach several hundred keV and can be either positive and negative, thus also smearing the shell effects.Comment: 10 pages, 3 figure

    Structural and decay properties of Z=132,138Z=132,138 superheavy nuclei

    Full text link
    In this paper, we analyze the structural properties of Z=132Z=132 and Z=138Z=138 superheavy nuclei within the ambit of axially deformed relativistic mean-field framework with NL33^{*} parametrization and calculate the total binding energies, radii, quadrupole deformation parameter, separation energies, density distributions. We also investigate the phenomenon of shape coexistence by performing the calculations for prolate, oblate and spherical configurations. For clear presentation of nucleon distributions, the two-dimensional contour representation of individual nucleon density and total matter density has been made. Further, a competition between possible decay modes such as α\alpha-decay, β\beta-decay and spontaneous fission of the isotopic chain of superheavy nuclei with Z=132Z=132 within the range 312 \le A \le 392 and 318 \le A \le 398 for Z=138Z=138 is systematically analyzed within self-consistent relativistic mean field model. From our analysis, we inferred that the α\alpha-decay and spontaneous fission are the principal modes of decay in majority of the isotopes of superheavy nuclei under investigation apart from β\beta decay as dominant mode of decay in 318322138^{318-322}138 isotopes.Comment: 16 pages, 10 figures , 8 table

    The stability and the shape of the heaviest nuclei

    Full text link
    In this paper, we report a systematic study of the heaviest nuclei within the relativistic mean field (RMF) model. By comparing our results with those of the Hartree-Fock-Bogoliubov method (HFB) and the finite range droplet model (FRDM), the stability and the shape of the heaviest nuclei are discussed. The theoretical predictions as well as the existing experimental data indicate that the experimentally synthesized superheavy nuclei are in between the fission stability line, the line connecting the nucleus with maximum binding energy per nucleon in each isotopic chain, and the β\beta-stability line, the line connecting the nucleus with maximum binding energy per nucleon in each isobaric chain. It is shown that both the fission stability line and the β\beta-stability line tend to be more proton rich in the superheavy region. Meanwhile, all the three theoretical models predict most synthesized superheavy nuclei to be deformed.Comment: 6 pages, 7 figures, to appear in Journal of Physics

    Cold reaction valleys in the radioactive decay of superheavy {286}^112, {292}^114 and {296}^116 nuclei

    Full text link
    Cold reaction valleys in the radioactive decay of superheavy nuclei {286}^112, {292}^114 and {296}^116 are studied taking Coulomb and Proximity Potential as the interacting barrier. It is found that in addition to alpha particle, 8^Be, 14^C, 28^Mg, 34^Si, 50^Ca, etc. are optimal cases of cluster radioactivity since they lie in the cold valleys. Two other regions of deep minima centered on 208^Pb and 132^Sn are also found. Within our Coulomb and Proximity Potential Model half-life times and other characteristics such as barrier penetrability, decay constant for clusters ranging from alpha particle to 68^Ni are calculated. The computed alpha half-lives match with the values calculated using Viola--Seaborg--Sobiczewski systematics. The clusters 8^Be and 14^C are found to be most probable for emission with T_1/2 < 1030s. The alpha-decay chains of the three superheavy nuclei are also studied. The computed alpha decay half-lives are compared with the values predicted by Generalized Liquid Drop Model and they are found to match reasonably well.Comment: 21 pages, 6 figure

    Recent developments in radioactive charged-particle emissions and related phenomena

    Full text link
    The advent and intensive use of new detector technologies as well as radioactive ion beam facilities have opened up possibilities to investigate alpha, proton and cluster decays of highly unstable nuclei. This article provides a review of the current status of our understanding of clustering and the corresponding radioactive particle decay process in atomic nuclei. We put alpha decay in the context of charged-particle emissions which also include one- and two-proton emissions as well as heavy cluster decay. The experimental as well as the theoretical advances achieved recently in these fields are presented. Emphasis is given to the recent discoveries of charged-particle decays from proton-rich nuclei around the proton drip line. Those decay measurements have shown to provide an important probe for studying the structure of the nuclei involved. Developments on the theoretical side in nuclear many-body theories and supercomputing facilities have also made substantial progress, enabling one to study the nuclear clusterization and decays within a microscopic and consistent framework. We report on properties induced by the nuclear interaction acting in the nuclear medium, like the pairing interaction, which have been uncovered by studying the microscopic structure of clusters. The competition between cluster formations as compared to the corresponding alpha-particle formation are included. In the review we also describe the search for super-heavy nuclei connected by chains of alpha and other radioactive particle decays.Comment: 58 pages, submitted to Prog. Part. Nucl. Phy

    Search for long lived heaviest nuclei beyond the valley of stability

    Full text link
    The existence of long lived superheavy nuclei (SHN) is controlled mainly by spontaneous fission and α\alpha-decay processes. According to microscopic nuclear theory, spherical shell effects at Z=114, 120, 126 and N=184 provide the extra stability to such SHN to have long enough lifetime to be observed. To investigate whether the so-called "stability island" could really exist around the above Z, N values, the α\alpha-decay half lives along with the spontaneous fission and β\beta-decay half lives of such nuclei are studied. The α\alpha-decay half lives of SHN with Z=102-120 are calculated in a quantum tunneling model with DDM3Y effective nuclear interaction using QαQ_\alpha values from three different mass formulae prescribed by Koura, Uno, Tachibana, Yamada (KUTY), Myers, Swiatecki (MS) and Muntian, Hofmann, Patyk, Sobiczewski (MMM). Calculation of spontaneous fission (SF) half lives for the same SHN are carried out using a phenomenological formula and compared with SF half lives predicted by Smolanczuk {\it et al}. Possible source of discrepancy between the calculated α\alpha-decay half lives of some nuclei and the experimental data of GSI, JINR-FLNR, RIKEN are discussed. In the region of Z=106-108 with N\sim 160-164, the β\beta-stable SHN 106268Sg162^{268}_{106}Sg_{162} is predicted to have highest α\alpha-decay half life (Tα3.2hrsT_\alpha \sim 3.2hrs) using QαQ_\alpha value from MMM. Interestingly, it is much greater than the recently measured TαT_\alpha (22s\sim 22s) of deformed doubly magic 108270Hs162^{270}_{108}Hs_{162} nucleus. A few fission-survived long-lived SHN which are either β\beta-stable or having large β\beta-decay half lives are predicted to exist near 294110184^{294}110_{184}, 293110183^{293}110_{183}, 296112184^{296}112_{184} and 298114184^{298}114_{184}. These nuclei might decay predominantly through α\alpha-particle emission.Comment: 14 pages, 6 figures, 1 tabl
    corecore