456,375 research outputs found
Predicting Grades
To increase efficacy in traditional classroom courses as well as in Massive
Open Online Courses (MOOCs), automated systems supporting the instructor are
needed. One important problem is to automatically detect students that are
going to do poorly in a course early enough to be able to take remedial
actions. Existing grade prediction systems focus on maximizing the accuracy of
the prediction while overseeing the importance of issuing timely and
personalized predictions. This paper proposes an algorithm that predicts the
final grade of each student in a class. It issues a prediction for each student
individually, when the expected accuracy of the prediction is sufficient. The
algorithm learns online what is the optimal prediction and time to issue a
prediction based on past history of students' performance in a course. We
derive a confidence estimate for the prediction accuracy and demonstrate the
performance of our algorithm on a dataset obtained based on the performance of
approximately 700 UCLA undergraduate students who have taken an introductory
digital signal processing over the past 7 years. We demonstrate that for 85% of
the students we can predict with 76% accuracy whether they are going do well or
poorly in the class after the 4th course week. Using data obtained from a pilot
course, our methodology suggests that it is effective to perform early in-class
assessments such as quizzes, which result in timely performance prediction for
each student, thereby enabling timely interventions by the instructor (at the
student or class level) when necessary.Comment: 15 pages, 15 figure
A critical assessment of imbalanced class distribution problem: the case of predicting freshmen student attrition
Predicting student attrition is an intriguing yet challenging problem for any academic institution. Class-imbalanced data is a common in the field of student retention, mainly because a lot of students register but fewer students drop out. Classification techniques for imbalanced dataset can yield deceivingly high
prediction accuracy where the overall predictive accuracy is usually driven by the majority class at the expense of having very poor performance on the crucial minority class. In this study, we compared different data balancing techniques to improve the predictive accuracy in minority class while maintaining satisfactory overall classification performance. Specifically, we tested three balancing techniques—oversampling, under-sampling and synthetic minority over-sampling (SMOTE)—along with four popular classification methods—logistic regression, decision trees, neuron networks and support vector machines. We used a large and feature rich institutional student data (between the years 2005 and 2011) to assess the efficacy of both balancing techniques as well as prediction methods. The results indicated that the support vector machine combined with SMOTE data-balancing technique achieved the best classification performance with a 90.24% overall accuracy on the 10-fold holdout sample. All three data-balancing techniques improved the prediction accuracy for the minority class. Applying sensitivity analyses on developed models, we also identified the most important variables for accurate prediction of student attrition. Application of these models has the potential to accurately predict at-risk students and help reduce student dropout rates
School-leavers' Transition to Tertiary Study: a Literature Review.
The theoretical and empirical literature relating to factors and problems in the transition of students from secondary to tertiary level education is reviewed here. Studies on persistence and attrition, and on the analysis and prediction of academic performance of students, generally and in particular discipline areas, are included.Transition to university; student performance.
Progressive Teacher-student Learning for Early Action Prediction
The goal of early action prediction is to recognize actions from partially observed videos with incomplete action executions, which is quite different from action recognition. Predicting early actions is very challenging since the partially observed videos do not contain enough action information for recognition. In this paper, we aim at improving early action prediction by proposing a novel teacherstudent learning framework. Our framework involves a teacher model for recognizing actions from full videos, a student model for predicting early actions from partial videos, and a teacher-student learning block for distilling progressive knowledge from teacher to student, crossing different tasks. Extensive experiments on three public action datasets show that the proposed progressive teacher-student learning framework can consistently improve performance of early action prediction model. We have also reported the state-of-the-art performances for early action prediction on all of these sets
The Potential for Student Performance Prediction in Small Cohorts with Minimal Available Attributes
The measurement of student performance during their progress through university study provides academic leadership with critical information on each student’s likelihood of success. Academics have traditionally used their interactions with individual students through class activities and interim assessments to identify those “at risk” of failure/withdrawal. However, modern university environments, offering easy on-line availability of course material, may see reduced lecture/tutorial attendance, making such identification more challenging. Modern data mining and machine learning techniques provide increasingly accurate predictions of student examination assessment marks, although these approaches have focussed upon large student populations and wide ranges of data attributes per student. However, many university modules comprise relatively small student cohorts, with institutional protocols limiting the student attributes available for analysis. It appears that very little research attention has been devoted to this area of analysis and prediction. We describe an experiment conducted on a final-year university module student cohort of 23, where individual student data are limited to lecture/tutorial attendance, virtual learning environment accesses and intermediate assessments. We found potential for predicting individual student interim and final assessment marks in small student cohorts with very limited attributes and that these predictions could be useful to support module leaders in identifying students potentially “at risk.”.Peer reviewe
Predicting Success Study Using Students GPA Category
. Maintaining student graduation rates are the main tasks of a University. High rates of student graduation and the quality of graduates is a success indicator of a university, which will have an impact on public confidence as stakeholders of higher education and the National Accreditation Board as a regulator (government). Making predictions of student graduation and determine the factors that hinders will be a valuable input for University. Data mining system facilitates the University to create the segmentation of students' performance and prediction of their graduation. Segmentation of student by their performance can be classified in a quadrant chart is divided into 4 segments based on grade point average and the growth rate of students performance index per semester. Standard methodology in data mining i.e CRISP-DM (Cross Industry Standard Procedure for Data Mining) will be implemented in this research. Making predictions, graduation can be done through the modeling process by utilizing the college database. Some algorithms such as C5, C & R Tree, CHAID, and Logistic Regression tested in order to find the best model. This research utilizes student performance data for several classes. Parameters used in addition to GPA also included the master's students data are expected to build the student profile data. The outcome of the study is the student category based on their study performance and prediction of graduation. Based on this prediction, the university may recommend actions to be taken to improve the student achievement index and graduation rates
Dropout Model Evaluation in MOOCs
The field of learning analytics needs to adopt a more rigorous approach for
predictive model evaluation that matches the complex practice of
model-building. In this work, we present a procedure to statistically test
hypotheses about model performance which goes beyond the state-of-the-practice
in the community to analyze both algorithms and feature extraction methods from
raw data. We apply this method to a series of algorithms and feature sets
derived from a large sample of Massive Open Online Courses (MOOCs). While a
complete comparison of all potential modeling approaches is beyond the scope of
this paper, we show that this approach reveals a large gap in dropout
prediction performance between forum-, assignment-, and clickstream-based
feature extraction methods, where the latter is significantly better than the
former two, which are in turn indistinguishable from one another. This work has
methodological implications for evaluating predictive or AI-based models of
student success, and practical implications for the design and targeting of
at-risk student models and interventions
- …
