2,977,500 research outputs found
On the Stability of Random Multiple Access with Stochastic Energy Harvesting
In this paper, we consider the random access of nodes having energy
harvesting capability and a battery to store the harvested energy. Each node
attempts to transmit the head-of-line packet in the queue if its battery is
nonempty. The packet and energy arrivals into the queue and the battery are all
modeled as a discrete-time stochastic process. The main contribution of this
paper is the exact characterization of the stability region of the packet
queues given the energy harvesting rates when a pair of nodes are randomly
accessing a common channel having multipacket reception (MPR) capability. The
channel with MPR capability is a generalized form of the wireless channel
modeling which allows probabilistic receptions of the simultaneously
transmitted packets. The results obtained in this paper are fairly general as
the cases with unlimited energy for transmissions both with the collision
channel and the channel with MPR capability can be derived from ours as special
cases. Furthermore, we study the impact of the finiteness of the batteries on
the achievable stability region.Comment: The material in this paper was presented in part at the IEEE
International Symposium on Information Theory, Saint Petersburg, Russia, Aug.
201
Channel-Aware Random Access in the Presence of Channel Estimation Errors
In this work, we consider the random access of nodes adapting their
transmission probability based on the local channel state information (CSI) in
a decentralized manner, which is called CARA. The CSI is not directly available
to each node but estimated with some errors in our scenario. Thus, the impact
of imperfect CSI on the performance of CARA is our main concern. Specifically,
an exact stability analysis is carried out when a pair of bursty sources are
competing for a common receiver and, thereby, have interdependent services. The
analysis also takes into account the compound effects of the multipacket
reception (MPR) capability at the receiver. The contributions in this paper are
twofold: first, we obtain the exact stability region of CARA in the presence of
channel estimation errors; such an assessment is necessary as the errors in
channel estimation are inevitable in the practical situation. Secondly, we
compare the performance of CARA to that achieved by the class of stationary
scheduling policies that make decisions in a centralized manner based on the
CSI feedback. It is shown that the stability region of CARA is not necessarily
a subset of that of centralized schedulers as the MPR capability improves.Comment: The material in this paper was presented in part at the IEEE
International Symposium on Information Theory, Cambridge, MA, USA, July 201
Ultra Wideband Impulse Radio Systems with Multiple Pulse Types
In an ultra wideband (UWB) impulse radio (IR) system, a number of pulses,
each transmitted in an interval called a "frame", is employed to represent one
information symbol. Conventionally, a single type of UWB pulse is used in all
frames of all users. In this paper, IR systems with multiple types of UWB
pulses are considered, where different types of pulses can be used in different
frames by different users. Both stored-reference (SR) and transmitted-reference
(TR) systems are considered. First, the spectral properties of a multi-pulse IR
system with polarity randomization is investigated. It is shown that the
average power spectral density is the average of the spectral contents of
different pulse shapes. Then, approximate closed-form expressions for the bit
error probability of a multi-pulse SR-IR system are derived for RAKE receivers
in asynchronous multiuser environments. The effects of both inter-frame
interference (IFI) and multiple-access interference (MAI) are analyzed. The
theoretical and simulation results indicate that SR-IR systems that are more
robust against IFI and MAI than a "conventional" SR-IR system can be designed
with multiple types of ultra-wideband pulses. Finally, extensions to
multi-pulse TR-IR systems are briefly described.Comment: To appear in the IEEE Journal on Selected Areas in Communications -
Special Issue on Ultrawideband Wireless Communications: Theory and
Application
Performance Evaluation of Impulse Radio UWB Systems with Pulse-Based Polarity Randomization
In this paper, the performance of a binary phase shift keyed random
time-hopping impulse radio system with pulse-based polarity randomization is
analyzed. Transmission over frequency-selective channels is considered and the
effects of inter-frame interference and multiple access interference on the
performance of a generic Rake receiver are investigated for both synchronous
and asynchronous systems. Closed form (approximate) expressions for the
probability of error that are valid for various Rake combining schemes are
derived. The asynchronous system is modelled as a chip-synchronous system with
uniformly distributed timing jitter for the transmitted pulses of interfering
users. This model allows the analytical technique developed for the synchronous
case to be extended to the asynchronous case. An approximate closed-form
expression for the probability of bit error, expressed in terms of the
autocorrelation function of the transmitted pulse, is derived for the
asynchronous case. Then, transmission over an additive white Gaussian noise
channel is studied as a special case, and the effects of multiple-access
interference is investigated for both synchronous and asynchronous systems. The
analysis shows that the chip-synchronous assumption can result in
over-estimating the error probability, and the degree of over-estimation mainly
depends on the autocorrelation function of the ultra-wideband pulse and the
signal-to-interference-plus-noise-ratio of the system. Simulations studies
support the approximate analysis.Comment: To appear in the IEEE Transactions on Signal Processin
Complicated lives
"This document is a brief summary of the report entitled Complicated lives"Titre de l'écran-titre (visionné le 4 août 2008).Également disponible en format papier.Bibliogr
Real-ationships an educational philosophy advocating for an increased effort towards authentic teacher-student relationships
The impact an educator has on a student\u27s life far exceeds the academic content being learned. The development of positive relationships between the teacher and student fosters the student\u27s feelings of connectedness to their education. A strengthened connection leads to an increase in motivation, effort, and achievement. Unfortunately, positive teacher-student relationships are not the primary focus of today\u27s educational systems. An educational philosophy advocating for real-ationships emphasizes the need for positive teacher-student relationships. The real-ationship\u27s characteristics and implementation are described in detail, while real-life examples depict the positive experiences I have had as an educator within real-tionships. It is a philosophy that can be adopted by any teacher, any grade, at any type of school: it offers a \u27way of being\u27 that cultivates healthy, positive encounters, interactions, and connections with one\u27s students
Living, Learning, and Leading at Linfield College
Kelsey Bruce discusses student engagement at Linfield College with regard to leadership through student/faculty collaborative research with Dr. Megan Bestwick, speech and debate, and the Linfield Residence Life team.https://digitalcommons.linfield.edu/inauguration2019_students/1003/thumbnail.jp
The First Weeks of June
Lex Runciman examines learning, life, and community following the death of a former student
Complicated lives
"This document is a brief summary of the report entitled Complicated lives"Titre de l'écran-titre (visionné le 4 août 2008).Également disponible en format papier.Bibliogr
- …
