3 research outputs found

    Structured Arc Reversal and Simulation of Dynamic Probabilistic Networks

    Full text link
    We present an algorithm for arc reversal in Bayesian networks with tree-structured conditional probability tables, and consider some of its advantages, especially for the simulation of dynamic probabilistic networks. In particular, the method allows one to produce CPTs for nodes involved in the reversal that exploit regularities in the conditional distributions. We argue that this approach alleviates some of the overhead associated with arc reversal, plays an important role in evidence integration and can be used to restrict sampling of variables in DPNs. We also provide an algorithm that detects the dynamic irrelevance of state variables in forward simulation. This algorithm exploits the structured CPTs in a reversed network to determine, in a time-independent fashion, the conditions under which a variable does or does not need to be sampled.Comment: Appears in Proceedings of the Thirteenth Conference on Uncertainty in Artificial Intelligence (UAI1997

    A Critique on the Interventional Detection of Causal Relationships

    Full text link
    Interventions are of fundamental importance in Pearl's probabilistic causality regime. In this paper, we will inspect how interventions influence the interpretation of causation in causal models in specific situation. To this end, we will introduce a priori relationships as non-causal relationships in a causal system. Then, we will proceed to discuss the cases that interventions can lead to spurious causation interpretations. This includes the interventional detection of a priori relationships, and cases where the interventional detection of causality forms structural causal models that are not valid in natural situations. We will also discuss other properties of a priori relations and SCMs that have a priori information in their structural equations.Comment: 15 pages, 6 figure

    Structured arc reversal and simulation of dynamic probabilistic networks

    No full text
    We present an algorithm for arc reversal in Bayesian networks with tree-structured conditional probability tables, and consider some of its advantages, especially for the simulation of dynamic probabilistic networks. In particular, the method allows one to produce CPTs for nodes involved in the reversal that exploit regularities in the conditional distributions. We argue that this approach alleviates some of the overhead associated with arc reversal, plays an important role in evidence integration and can be used to restrict sampling of variables in DPNs. We also provide an algorithm that detects the dynamic irrelevance of state variables in forward simulation. This algorithm exploits the structured CPTs in a reversed network to determine, in a timeindependent fashion, the conditions under which a variable does or does not need to be sampled.
    corecore