35,366 research outputs found
Robust Preconditioners for Incompressible MHD Models
In this paper, we develop two classes of robust preconditioners for the
structure-preserving discretization of the incompressible magnetohydrodynamics
(MHD) system. By studying the well-posedness of the discrete system, we design
block preconditioners for them and carry out rigorous analysis on their
performance. We prove that such preconditioners are robust with respect to most
physical and discretization parameters. In our proof, we improve the existing
estimates of the block triangular preconditioners for saddle point problems by
removing the scaling parameters, which are usually difficult to choose in
practice. This new technique is not only applicable to the MHD system, but also
to other problems. Moreover, we prove that Krylov iterative methods with our
preconditioners preserve the divergence-free condition exactly, which
complements the structure-preserving discretization. Another feature is that we
can directly generalize this technique to other discretizations of the MHD
system. We also present preliminary numerical results to support the
theoretical results and demonstrate the robustness of the proposed
preconditioners
Multilevel Approach For Signal Restoration Problems With Toeplitz Matrices
We present a multilevel method for discrete ill-posed problems arising from the discretization of Fredholm integral equations of the first kind. In this method, we use the Haar wavelet transform to define restriction and prolongation operators within a multigrid-type iteration. The choice of the Haar wavelet operator has the advantage of preserving matrix structure, such as Toeplitz, between grids, which can be exploited to obtain faster solvers on each level where an edge-preserving Tikhonov regularization is applied. Finally, we present results that indicate the promise of this approach for restoration of signals and images with edges
Non-standard discretization of biological models
We consider certain types of discretization schemes for differential equations with quadratic nonlinearities, which were introduced by Kahan, and considered in a broader setting by Mickens. These methods have the property that they preserve important structural features of the original systems, such as the behaviour of solutions near to fixed points, and also, where appropriate (e.g. for certain mechanical systems), the property of being volume-preserving, or preserving a symplectic/Poisson structure. Here we focus on the application of Kahan's method to models of biological systems, in particular to reaction kinetics governed by the Law of Mass Action, and present a general approach to birational discretization, which is applied to population dynamics of Lotka-Volterra type
Constructing solutions to the Bj\"orling problem for isothermic surfaces by structure preserving discretization
In this article, we study an analog of the Bj\"orling problem for isothermic
surfaces (that are more general than minimal surfaces): given a real analytic
curve in , and two analytic non-vanishing orthogonal
vector fields and along , find an isothermic surface that is
tangent to and that has and as principal directions of
curvature. We prove that solutions to that problem can be obtained by
constructing a family of discrete isothermic surfaces (in the sense of Bobenko
and Pinkall) from data that is sampled along , and passing to the limit
of vanishing mesh size. The proof relies on a rephrasing of the
Gauss-Codazzi-system as analytic Cauchy problem and an in-depth-analysis of its
discretization which is induced from the geometry of discrete isothermic
surfaces. The discrete-to-continuous limit is carried out for the Christoffel
and the Darboux transformations as well.Comment: 29 pages, some figure
Weak Form of Stokes-Dirac Structures and Geometric Discretization of Port-Hamiltonian Systems
We present the mixed Galerkin discretization of distributed parameter
port-Hamiltonian systems. On the prototypical example of hyperbolic systems of
two conservation laws in arbitrary spatial dimension, we derive the main
contributions: (i) A weak formulation of the underlying geometric
(Stokes-Dirac) structure with a segmented boundary according to the causality
of the boundary ports. (ii) The geometric approximation of the Stokes-Dirac
structure by a finite-dimensional Dirac structure is realized using a mixed
Galerkin approach and power-preserving linear maps, which define minimal
discrete power variables. (iii) With a consistent approximation of the
Hamiltonian, we obtain finite-dimensional port-Hamiltonian state space models.
By the degrees of freedom in the power-preserving maps, the resulting family of
structure-preserving schemes allows for trade-offs between centered
approximations and upwinding. We illustrate the method on the example of
Whitney finite elements on a 2D simplicial triangulation and compare the
eigenvalue approximation in 1D with a related approach.Comment: Copyright 2018. This manuscript version is made available under the
CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0
- …
