1,674,853 research outputs found

    Effect of tensile stress on the in-plane resistivity anisotropy in BaFe2As2

    Get PDF
    The effect of uniaxial tensile stress and the resultant strain on the structural/magnetic transition in the parent compound of the iron arsenide superconductor, BaFe2_2As2_2, is characterized by temperature-dependent electrical resistivity, x-ray diffraction and quantitative polarized light imaging. We show that strain induces a measurable uniaxial structural distortion above the first-order magnetic transition and significantly smears the structural transition. This response is different from that found in another parent compound, SrFe2_2As2_2, where the coupled structural and magnetic transitions are strongly first order. This difference in the structural responses explains the in-plain resistivity anisotropy above the transition in BaFe2_2As2_2. This conclusion is supported by the Ginzburg-Landau - type phenomenological model for the effect of the uniaxial strain on the resistivity anisotropy

    First-Order Reversal Curves of the Magnetostructural Phase Transition in FeTe

    Get PDF
    We apply the first-order reversal curve (FORC) method, borrowed from studies of ferromagnetic materials, to the magneto-structural phase transition of FeTe. FORC measurements reveal two features in the hysteretic phase transition, even in samples where traditional temperature measurements display only a single transition. For Fe1.13Te, the influence of magnetic field suggests that the main feature is primarily structural while a smaller, slightly higher-temperature transition is magnetic in origin. By contrast Fe1.03Te has a single transition which shows a uniform response to magnetic field, indicating a stronger coupling of the magnetic and structural phase transitions. We also introduce uniaxial stress, which spreads the distribution width without changing the underlying energy barrier of the transformation. The work shows how FORC can help disentangle the roles of the magnetic and structural phase transitions in FeTe.Comment: 8 page

    Low-temperature structural transition in FeCr_2S_4

    Full text link
    Transmission electron microscopy studies of [110] and [111] oriented FeCr_2S_4 single crystals at different temperatures reveal a structural transition at low temperatures indicating a cubic-to-triclinic symmetry reduction within crystallographic domains. The overall crystal symmetry was found to be reduced from Fd3m to F-43m. The triclinic distortions were suggested to result from the combined actions of tetragonal distortions due to the Jahn-Teller active Fe^2+ ions and trigonal distortions due to a displacement of the Cr^3+ ions in the direction.Comment: 4 pages, 8 figure

    Temperature driven structural phase transition for trapped ions and its experimental detection

    Full text link
    A Wigner crystal formed with trapped ion can undergo structural phase transition, which is determined only by the mechanical conditions on a classical level. Instead of this classical result, we show that through consideration of quantum and thermal fluctuation, a structural phase transition can be solely driven by change of the system's temperature. We determine a finite-temperature phase diagram for trapped ions using the renormalization group method and the path integral formalism, and propose an experimental scheme to observe the predicted temperature-driven structural phase transition, which is well within the reach of the current ion trap technology.Comment: 4 pages, 5 figure
    corecore