535,200 research outputs found

    Synthetic gas networks for the statistical assessment of low-carbon distribution systems

    Get PDF
    Most of the simulation studies on energy networks, including gas grids, derive their results from a limited number of network models. The findings of these works are therefore affected by a substantial case-specificity, which partially limits their validity and prevents their generalisation. To overcome this limitation, the present work proposes a novel statistical-based approach for studying distribution gas networks, enabled by a generator of random gas grids with accurate technical designs and structural features. Ten thousand random and unique networks are produced in three different tests, where increasingly tight constraints are applied to the synthetisation process for a higher control over the generated grids. The experiments verify the accuracy of the tool and highlight that substantial variations can be found in the hydraulic behaviour (pressures and gas velocities) and structural properties (pipe diameters and network volumes) of real-world gas networks. The observed 10,000 gas grids evidence the information gain offered by statistical-based approaches with respect to traditional case-specific studies. The tool opens a broad range of applications which include, but are not limited to, statistical analyses on the distributed injection of alternative gases, like hydrogen, in integrated, low-carbon, energy systems

    Control Variables, Discrete Instruments, and Identification of Structural Functions

    Full text link
    Control variables provide an important means of controlling for endogeneity in econometric models with nonseparable and/or multidimensional heterogeneity. We allow for discrete instruments, giving identification results under a variety of restrictions on the way the endogenous variable and the control variables affect the outcome. We consider many structural objects of interest, such as average or quantile treatment effects. We illustrate our results with an empirical application to Engel curve estimation.Comment: 37 pages, 4 figure

    Marginal integration for nonparametric causal inference

    Full text link
    We consider the problem of inferring the total causal effect of a single variable intervention on a (response) variable of interest. We propose a certain marginal integration regression technique for a very general class of potentially nonlinear structural equation models (SEMs) with known structure, or at least known superset of adjustment variables: we call the procedure S-mint regression. We easily derive that it achieves the convergence rate as for nonparametric regression: for example, single variable intervention effects can be estimated with convergence rate n−2/5n^{-2/5} assuming smoothness with twice differentiable functions. Our result can also be seen as a major robustness property with respect to model misspecification which goes much beyond the notion of double robustness. Furthermore, when the structure of the SEM is not known, we can estimate (the equivalence class of) the directed acyclic graph corresponding to the SEM, and then proceed by using S-mint based on these estimates. We empirically compare the S-mint regression method with more classical approaches and argue that the former is indeed more robust, more reliable and substantially simpler.Comment: 40 pages, 14 figure
    • …
    corecore