2,603,836 research outputs found

    The Structural and Magnetic Properties of La1-xcaxmno3 with X = 0.27 and 0.47

    Full text link
    We have studied the structural and magnetic properties for La1-xCaxMnO3 with x = 0.27 and 0.47 using neutron powder diffraction and magnetization measurements. At room and low temperature, all samples have the orthorhombic structure with space group Pnma. The sample x = 0.47 shows the antiferromagnetic mix a ferromagnetic with the magnetic moment and the Curie temperature are 1.30 µβ and 260 K, respectively while the sample x = 0.27 is a ferromagnetic with the magnetic momentand the Curie temperature are 3.10 µβ and 197 K, respectively

    Lattice Path Matroids: Structural Properties

    Full text link
    This paper studies structural aspects of lattice path matroids, a class of transversal matroids that is closed under taking minors and duals. Among the basic topics treated are direct sums, duals, minors, circuits, and connected flats. One of the main results is a characterization of lattice path matroids in terms of fundamental flats, which are special connected flats from which one can recover the paths that define the matroid. We examine some aspects related to key topics in the literature of transversal matroids and we determine the connectivity of lattice path matroids. We also introduce notch matroids, a minor-closed, dual-closed subclass of lattice path matroids, and we find their excluded minors.Comment: 34 pages, 15 figure

    Tribological properties of structural ceramics

    Get PDF
    The tribological and lubricated behavior of both oxide and nonoxide ceramics are reviewed in this chapter. Ceramics are examined in contact with themselves, other harder materials and metals. Elastic, plastic and fracture behavior of ceramics in solid state contact is discussed. The contact load necessary to initiate fracture in ceramics is shown to be appreciably reduced with tangential motion. Both friction and wear of ceramics are anisotropic and relate to crystal structure as has been observed with metals. Grit size effects in two and three body abrasive wear are observed for ceramics. Both free energy of oxide formation and the d valence bond character of metals are related to the friction and wear characteristics for metals in contact with ceramics. Surface contaminants affect friction and adhesive wear. For example, carbon on silicon carbide and chlorine on aluminum oxide reduce friction while oxygen on metal surfaces in contact with ceramics increases friction. Lubrication increases the critical load necessary to initiate fracture of ceramics both in indentation and with sliding or rubbing. Ceramics compositions both as coatings and in composites are described for the high temperature lubrication of both alloys and ceramics

    Structural and Magnetic Properties of Trigonal Iron

    Full text link
    First principles calculations of the electronic structure of trigonal iron were performed using density function theory. The results are used to predict lattice spacings, magnetic moments and elastic properties; these are in good agreement with experiment for both the bcc and fcc structures. We find however, that in extracting these quantities great care must be taken in interpreting numerical fits to the calculated total energies. In addition, the results for bulk iron give insight into the properties of thin iron films. Thin films grown on substrates with mismatched lattice constants often have non-cubic symmetry. If they are thicker than a few monolayers their electronic structure is similar to a bulk material with an appropriately distorted geometry, as in our trigonal calculations. We recast our bulk results in terms of an iron film grown on the (111) surface of an fcc substrate, and find the predicted strain energies and moments accurately reflect the trends for iron growth on a variety of substrates.Comment: 11 pages, RevTeX,4 tar'd,compressed, uuencoded Postscript figure
    corecore