685 research outputs found

    Cross Dynamic Range And Cross Resolution Objective Image Quality Assessment With Applications

    Get PDF
    In recent years, image and video signals have become an indispensable part of human life. There has been an increasing demand for high quality image and video products and services. To monitor, maintain and enhance image and video quality objective image and video quality assessment tools play crucial roles in a wide range of applications throughout the field of image and video processing, including image and video acquisition, communication, interpolation, retrieval, and displaying. A number of objective image and video quality measures have been introduced in the last decades such as mean square error (MSE), peak signal to noise ratio (PSNR), and structural similarity index (SSIM). However, they are not applicable when the dynamic range or spatial resolution of images being compared is different from that of the corresponding reference images. In this thesis, we aim to tackle these two main problems in the field of image quality assessment. Tone mapping operators (TMOs) that convert high dynamic range (HDR) to low dynamic range (LDR) images provide practically useful tools for the visualization of HDR images on standard LDR displays. Most TMOs have been designed in the absence of a well-established and subject-validated image quality assessment (IQA) model, without which fair comparisons and further improvement are difficult. We propose an objective quality assessment algorithm for tone-mapped images using HDR images as references by combining 1) a multi-scale signal fidelity measure based on a modified structural similarity (SSIM) index; and 2) a naturalness measure based on intensity statistics of natural images. To evaluate the proposed Tone-Mapped image Quality Index (TMQI), its performance in several applications and optimization problems is provided. Specifically, the main component of TMQI known as structural fidelity is modified and adopted to enhance the visualization of HDR medical images on standard displays. Moreover, a substantially different approach to design TMOs is presented, where instead of using any pre-defined systematic computational structure (such as image transformation or contrast/edge enhancement) for tone-mapping, we navigate in the space of all LDR images, searching for the image that maximizes structural fidelity or TMQI. There has been an increasing number of image interpolation and image super-resolution (SR) algorithms proposed recently to create images with higher spatial resolution from low-resolution (LR) images. However, the evaluation of such SR and interpolation algorithms is cumbersome. Most existing image quality measures are not applicable because LR and resultant high resolution (HR) images have different spatial resolutions. We make one of the first attempts to develop objective quality assessment methods to compare LR and HR images. Our method adopts a framework based on natural scene statistics (NSS) where image quality degradation is gauged by the deviation of its statistical features from NSS models trained upon high quality natural images. In particular, we extract frequency energy falloff, dominant orientation and spatial continuity statistics from natural images and build statistical models to describe such statistics. These models are then used to measure statistical naturalness of interpolated images. We carried out subjective tests to validate our approach, which also demonstrates promising results. The performance of the proposed measure is further evaluated when applied to parameter tuning in image interpolation algorithms

    Multimodal enhancement-fusion technique for natural images.

    Get PDF
    Masters Degree. University of KwaZulu-Natal, Durban.This dissertation presents a multimodal enhancement-fusion (MEF) technique for natural images. The MEF is expected to contribute value to machine vision applications and personal image collections for the human user. Image enhancement techniques and the metrics that are used to assess their performance are prolific, and each is usually optimised for a specific objective. The MEF proposes a framework that adaptively fuses multiple enhancement objectives into a seamless pipeline. Given a segmented input image and a set of enhancement methods, the MEF applies all the enhancers to the image in parallel. The most appropriate enhancement in each image segment is identified, and finally, the differentially enhanced segments are seamlessly fused. To begin with, this dissertation studies targeted contrast enhancement methods and performance metrics that can be utilised in the proposed MEF. It addresses a selection of objective assessment metrics for contrast-enhanced images and determines their relationship with the subjective assessment of human visual systems. This is to identify which objective metrics best approximate human assessment and may therefore be used as an effective replacement for tedious human assessment surveys. A subsequent human visual assessment survey is conducted on the same dataset to ascertain image quality as perceived by a human observer. The interrelated concepts of naturalness and detail were found to be key motivators of human visual assessment. Findings show that when assessing the quality or accuracy of these methods, no single quantitative metric correlates well with human perception of naturalness and detail, however, a combination of two or more metrics may be used to approximate the complex human visual response. Thereafter, this dissertation proposes the multimodal enhancer that adaptively selects the optimal enhancer for each image segment. MEF focusses on improving chromatic irregularities such as poor contrast distribution. It deploys a concurrent enhancement pathway that subjects an image to multiple image enhancers in parallel, followed by a fusion algorithm that creates a composite image that combines the strengths of each enhancement path. The study develops a framework for parallel image enhancement, followed by parallel image assessment and selection, leading to final merging of selected regions from the enhanced set. The output combines desirable attributes from each enhancement pathway to produce a result that is superior to each path taken alone. The study showed that the proposed MEF technique performs well for most image types. MEF is subjectively favourable to a human panel and achieves better performance for objective image quality assessment compared to other enhancement methods

    G2NPAN: GAN-guided nuance perceptual attention network for multimodal medical fusion image quality assessment

    Get PDF
    Multimodal medical fusion images (MMFI) are formed by fusing medical images of two or more modalities with the aim of displaying as much valuable information as possible in a single image. However, due to the different strategies of various fusion algorithms, the quality of the generated fused images is uneven. Thus, an effective blind image quality assessment (BIQA) method is urgently required. The challenge of MMFI quality assessment is to enable the network to perceive the nuances between fused images of different qualities, and the key point for the success of BIQA is the availability of valid reference information. To this end, this work proposes a generative adversarial network (GAN) -guided nuance perceptual attention network (G2NPAN) to implement BIQA for MMFI. Specifically, we achieve the blind evaluation style via the design of a GAN and develop a Unique Feature Warehouse module to learn the effective features of fused images from the pixel level. The redesigned loss function guides the network to perceive the image quality. In the end, the class activation mapping supervised quality assessment network is employed to obtain the MMFI quality score. Extensive experiments and validation have been conducted in a database of medical fusion images, and the proposed method is superior to the state-of-the-art BIQA method

    Kuvanlaatukokemuksen arvionnin instrumentit

    Get PDF
    This dissertation describes the instruments available for image quality evaluation, develops new methods for subjective image quality evaluation and provides image and video databases for the assessment and development of image quality assessment (IQA) algorithms. The contributions of the thesis are based on six original publications. The first publication introduced the VQone toolbox for subjective image quality evaluation. It created a platform for free-form experimentation with standardized image quality methods and was the foundation for later studies. The second publication focused on the dilemma of reference in subjective experiments by proposing a new method for image quality evaluation: the absolute category rating with dynamic reference (ACR-DR). The third publication presented a database (CID2013) in which 480 images were evaluated by 188 observers using the ACR-DR method proposed in the prior publication. Providing databases of image files along with their quality ratings is essential in the field of IQA algorithm development. The fourth publication introduced a video database (CVD2014) based on having 210 observers rate 234 video clips. The temporal aspect of the stimuli creates peculiar artifacts and degradations, as well as challenges to experimental design and video quality assessment (VQA) algorithms. When the CID2013 and CVD2014 databases were published, most state-of-the-art I/VQAs had been trained on and tested against databases created by degrading an original image or video with a single distortion at a time. The novel aspect of CID2013 and CVD2014 was that they consisted of multiple concurrent distortions. To facilitate communication and understanding among professionals in various fields of image quality as well as among non-professionals, an attribute lexicon of image quality, the image quality wheel, was presented in the fifth publication of this thesis. Reference wheels and terminology lexicons have a long tradition in sensory evaluation contexts, such as taste experience studies, where they are used to facilitate communication among interested stakeholders; however, such an approach has not been common in visual experience domains, especially in studies on image quality. The sixth publication examined how the free descriptions given by the observers influenced the ratings of the images. Understanding how various elements, such as perceived sharpness and naturalness, affect subjective image quality can help to understand the decision-making processes behind image quality evaluation. Knowing the impact of each preferential attribute can then be used for I/VQA algorithm development; certain I/VQA algorithms already incorporate low-level human visual system (HVS) models in their algorithms.Väitöskirja tarkastelee ja kehittää uusia kuvanlaadun arvioinnin menetelmiä, sekä tarjoaa kuva- ja videotietokantoja kuvanlaadun arviointialgoritmien (IQA) testaamiseen ja kehittämiseen. Se, mikä koetaan kauniina ja miellyttävänä, on psykologisesti kiinnostava kysymys. Työllä on myös merkitystä teollisuuteen kameroiden kuvanlaadun kehittämisessä. Väitöskirja sisältää kuusi julkaisua, joissa tarkastellaan aihetta eri näkökulmista. I. julkaisussa kehitettiin sovellus keräämään ihmisten antamia arvioita esitetyistä kuvista tutkijoiden vapaaseen käyttöön. Se antoi mahdollisuuden testata standardoituja kuvanlaadun arviointiin kehitettyjä menetelmiä ja kehittää niiden pohjalta myös uusia menetelmiä luoden perustan myöhemmille tutkimuksille. II. julkaisussa kehitettiin uusi kuvanlaadun arviointimenetelmä. Menetelmä hyödyntää sarjallista kuvien esitystapaa, jolla muodostettiin henkilöille mielikuva kuvien laatuvaihtelusta ennen varsinaista arviointia. Tämän todettiin vähentävän tulosten hajontaa ja erottelevan pienempiä kuvanlaatueroja. III. julkaisussa kuvaillaan tietokanta, jossa on 188 henkilön 480 kuvasta antamat laatuarviot ja niihin liittyvät kuvatiedostot. Tietokannat ovat arvokas työkalu pyrittäessä kehittämään algoritmeja kuvanlaadun automaattiseen arvosteluun. Niitä tarvitaan mm. opetusmateriaalina tekoälyyn pohjautuvien algoritmien kehityksessä sekä vertailtaessa eri algoritmien suorituskykyä toisiinsa. Mitä paremmin algoritmin tuottama ennuste korreloi ihmisten antamiin laatuarvioihin, sen parempi suorituskyky sillä voidaan sanoa olevan. IV. julkaisussa esitellään tietokanta, jossa on 210 henkilön 234 videoleikkeestä tekemät laatuarviot ja niihin liittyvät videotiedostot. Ajallisen ulottuvuuden vuoksi videoärsykkeiden virheet ovat erilaisia kuin kuvissa, mikä tuo omat haasteensa videoiden laatua arvioiville algoritmeille (VQA). Aikaisempien tietokantojen ärsykkeet on muodostettu esimerkiksi sumentamalla yksittäistä kuvaa asteittain, jolloin ne sisältävät vain yksiulotteisia vääristymiä. Nyt esitetyt tietokannat poikkeavat aikaisemmista ja sisältävät useita samanaikaisia vääristymistä, joiden interaktio kuvanlaadulle voi olla merkittävää. V. julkaisussa esitellään kuvanlaatuympyrä (image quality wheel). Se on kuvanlaadun käsitteiden sanasto, joka on kerätty analysoimalla 146 henkilön tuottamat 39 415 kuvanlaadun sanallista kuvausta. Sanastoilla on pitkät perinteet aistinvaraisen arvioinnin tutkimusperinteessä, mutta niitä ei ole aikaisemmin kehitetty kuvanlaadulle. VI. tutkimuksessa tutkittiin, kuinka arvioitsijoiden antamat käsitteet vaikuttavat kuvien laadun arviointiin. Esimerkiksi kuvien arvioitu terävyys tai luonnollisuus auttaa ymmärtämään laadunarvioinnin taustalla olevia päätöksentekoprosesseja. Tietoa voidaan käyttää esimerkiksi kuvan- ja videonlaadun arviointialgoritmien (I/VQA) kehitystyössä

    High dynamic range imaging for face matching

    Get PDF
    Human facial recognition in the context of surveillance, forensics and photo-ID verification is a task for which accuracy is critical. In most cases, this involves unfamiliar face recognition whereby the observer has had very short or no exposure at all to the faces being identified. In such cases, recognition performance is very poor: changes in appearance, limitations in the overall quality of images - illumination in particular - reduces individuals’ ability in taking decisions regarding a person’s identity. High Dynamic Range (HDR) imaging permits handling of real-world lighting with higher accuracy than the traditional low (or standard) dynamic range (LDR) imaging. The intrinsic benefits provided by HDR make it the ideal candidate to verify whether this technology can improve individuals’ performance in face matching, especially in challenging lighting conditions. This thesis compares HDR imaging against LDR imaging in an unfamiliar face matching task. A radiometrically calibrated HDR face dataset with five different lighting conditions is created. Subsequently, this dataset is used in controlled experiments to measure performance (i.e. reaction times and accuracy) of human participants when identifying faces in HDR. Experiment 1: HDRvsLDR (N = 39) compared participants’ performance when using HDR vs LDR stimuli created using the two full pipelines. The findings from this experiment suggest that HDR (µ =90.08%) can significantly (p< 0.01) improve face matching accuracy over LDR (µ =83.38%) and significantly (p<0.05) reduce reaction times (HDR 3.06s and LDR 3.31s). Experiment 2: Backwards-Compatibility HDR (N = 39) compared par ticipants’ performance when the LDR pipeline is upgraded by adding HDR imaging in the capture or in the display stage. The results show that adopt xi ing HDR imaging in the capture stage, even if the stimuli are subsequently tone-mapped and displayed on an LDR screen, allows higher accuracy (capture stage: µ =85.11% and display stage: µ =80.70%), (p<0.01) and faster reaction times (capture stage: µ =3.06s and display stage: µ =3.25s), (p< 0.05) than when native LDR images are retargeted to be displayed on an HDR display. In Experiment 3: the data collected from previous experiments was used to perform further analysis (N = 78) on all stages of the HDR pipeline simultaneously. The results show that the adoption of the full-HDR pipeline as opposed to a backwards-compatible one is advisable if the best values of accuracy are to be achieved (5.84% increase compared to the second best outcome, p<0.01). This work demonstrates scope for improvement in the accuracy of face matching tasks by realistic image reproduction and delivery through the adoption of HDR imaging techniques

    Image Quality Evaluation in Lossy Compressed Images

    Get PDF
    This research focuses on the quantification of image quality in lossy compressed images, exploring the impact of digital artefacts and scene characteristics upon image quality evaluation. A subjective paired comparison test was implemented to assess perceived quality of JPEG 2000 against baseline JPEG over a range of different scene types. Interval scales were generated for both algorithms, which indicated a subjective preference for JPEG 2000, particularly at low bit rates, and these were confirmed by an objective distortion measure. The subjective results did not follow this trend for some scenes however, and both algorithms were found to be scene dependent as a result of the artefacts produced at high compression rates. The scene dependencies were explored from the interval scale results, which allowed scenes to be grouped according to their susceptibilities to each of the algorithms. Groupings were correlated with scene measures applied in a linked study. A pilot study was undertaken to explore perceptibility thresholds of JPEG 2000 of the same set of images. This work was developed with a further experiment to investigate the thresholds of perceptibility and acceptability of higher resolution JPEG 2000 compressed images. A set of images was captured using a professional level full-frame Digital Single Lens Reflex camera, using a raw workflow and carefully controlled image-processing pipeline. The scenes were quantified using a set of simple scene metrics to classify them according to whether they were average, higher than, or lower than average, for a number of scene properties known to affect image compression and perceived image quality; these were used to make a final selection of test images. Image fidelity was investigated using the method of constant stimuli to quantify perceptibility thresholds and just noticeable differences (JNDs) of perceptibility. Thresholds and JNDs of acceptability were also quantified to explore suprathreshold quality evaluation. The relationships between the two thresholds were examined and correlated with the results from the scene measures, to identify more or less susceptible scenes. It was found that the level and differences between the two thresholds was an indicator of scene dependency and could be predicted by certain types of scene characteristics. A third study implemented the soft copy quality ruler as an alternative psychophysical method, by matching the quality of compressed images to a set of images varying in a single attribute, separated by known JND increments of quality. The imaging chain and image processing workflow were evaluated using objective measures of tone reproduction and spatial frequency response. An alternative approach to the creation of ruler images was implemented and tested, and the resulting quality rulers were used to evaluate a subset of the images from the previous study. The quality ruler was found to be successful in identifying scene susceptibilities and observer sensitivity. The fourth investigation explored the implementation of four different image quality metrics. These were the Modular Image Difference Metric, the Structural Similarity Metric, The Multi-scale Structural Similarity Metric and the Weighted Structural Similarity Metric. The metrics were tested against the subjective results and all were found to have linear correlation in terms of predictability of image quality

    Efficient and effective objective image quality assessment metrics

    Get PDF
    Acquisition, transmission, and storage of images and videos have been largely increased in recent years. At the same time, there has been an increasing demand for high quality images and videos to provide satisfactory quality-of-experience for viewers. In this respect, high dynamic range (HDR) imaging with higher than 8-bit depth has been an interesting approach in order to capture more realistic images and videos. Objective image and video quality assessment plays a significant role in monitoring and enhancing the image and video quality in several applications such as image acquisition, image compression, multimedia streaming, image restoration, image enhancement and displaying. The main contributions of this work are to propose efficient features and similarity maps that can be used to design perceptually consistent image quality assessment tools. In this thesis, perceptually consistent full-reference image quality assessment (FR-IQA) metrics are proposed to assess the quality of natural, synthetic, photo-retouched and tone-mapped images. In addition, efficient no-reference image quality metrics are proposed to assess JPEG compressed and contrast distorted images. Finally, we propose a perceptually consistent color to gray conversion method, perform a subjective rating and evaluate existing color to gray assessment metrics. Existing FR-IQA metrics may have the following limitations. First, their performance is not consistent for different distortions and datasets. Second, better performing metrics usually have high complexity. We propose in this thesis an efficient and reliable full-reference image quality evaluator based on new gradient and color similarities. We derive a general deviation pooling formulation and use it to compute a final quality score from the similarity maps. Extensive experimental results verify high accuracy and consistent performance of the proposed metric on natural, synthetic and photo retouched datasets as well as its low complexity. In order to visualize HDR images on standard low dynamic range (LDR) displays, tone-mapping operators are used in order to convert HDR into LDR. Given different depth bits of HDR and LDR, traditional FR-IQA metrics are not able to assess the quality of tone-mapped images. The existing full-reference metric for tone-mapped images called TMQI converts both HDR and LDR to an intermediate color space and measure their similarity in the spatial domain. We propose in this thesis a feature similarity full-reference metric in which local phase of HDR is compared with the local phase of LDR. Phase is an important information of images and previous studies have shown that human visual system responds strongly to points in an image where the phase information is ordered. Experimental results on two available datasets show the very promising performance of the proposed metric. No-reference image quality assessment (NR-IQA) metrics are of high interest because in the most present and emerging practical real-world applications, the reference signals are not available. In this thesis, we propose two perceptually consistent distortion-specific NR-IQA metrics for JPEG compressed and contrast distorted images. Based on edge statistics of JPEG compressed images, an efficient NR-IQA metric for blockiness artifact is proposed which is robust to block size and misalignment. Then, we consider the quality assessment of contrast distorted images which is a common distortion. Higher orders of Minkowski distance and power transformation are used to train a low complexity model that is able to assess contrast distortion with high accuracy. For the first time, the proposed model is used to classify the type of contrast distortions which is very useful additional information for image contrast enhancement. Unlike its traditional use in the assessment of distortions, objective IQA can be used in other applications. Examples are the quality assessment of image fusion, color to gray image conversion, inpainting, background subtraction, etc. In the last part of this thesis, a real-time and perceptually consistent color to gray image conversion methodology is proposed. The proposed correlation-based method and state-of-the-art methods are compared by subjective and objective evaluation. Then, a conclusion is made on the choice of the objective quality assessment metric for the color to gray image conversion. The conducted subjective ratings can be used in the development process of quality assessment metrics for the color to gray image conversion and to test their performance
    corecore