3 research outputs found

    Structural Consistency and Controllability for Diverse Colorization

    Full text link
    Colorizing a given gray-level image is an important task in the media and advertising industry. Due to the ambiguity inherent to colorization (many shades are often plausible), recent approaches started to explicitly model diversity. However, one of the most obvious artifacts, structural inconsistency, is rarely considered by existing methods which predict chrominance independently for every pixel. To address this issue, we develop a conditional random field based variational auto-encoder formulation which is able to achieve diversity while taking into account structural consistency. Moreover, we introduce a controllability mecha- nism that can incorporate external constraints from diverse sources in- cluding a user interface. Compared to existing baselines, we demonstrate that our method obtains more diverse and globally consistent coloriza- tions on the LFW, LSUN-Church and ILSVRC-2015 datasets.Comment: Accepted to ECCV 201

    Deep Photo Cropper and Enhancer

    Full text link
    This paper introduces a new type of image enhancement problem. Compared to traditional image enhancement methods, which mostly deal with pixel-wise modifications of a given photo, our proposed task is to crop an image which is embedded within a photo and enhance the quality of the cropped image. We split our proposed approach into two deep networks: deep photo cropper and deep image enhancer. In the photo cropper network, we employ a spatial transformer to extract the embedded image. In the photo enhancer, we employ super-resolution to increase the number of pixels in the embedded image and reduce the effect of stretching and distortion of pixels. We use cosine distance loss between image features and ground truth for the cropper and the mean square loss for the enhancer. Furthermore, we propose a new dataset to train and test the proposed method. Finally, we analyze the proposed method with respect to qualitative and quantitative evaluations

    SCGAN: Saliency Map-guided Colorization with Generative Adversarial Network

    Full text link
    Given a grayscale photograph, the colorization system estimates a visually plausible colorful image. Conventional methods often use semantics to colorize grayscale images. However, in these methods, only classification semantic information is embedded, resulting in semantic confusion and color bleeding in the final colorized image. To address these issues, we propose a fully automatic Saliency Map-guided Colorization with Generative Adversarial Network (SCGAN) framework. It jointly predicts the colorization and saliency map to minimize semantic confusion and color bleeding in the colorized image. Since the global features from pre-trained VGG-16-Gray network are embedded to the colorization encoder, the proposed SCGAN can be trained with much less data than state-of-the-art methods to achieve perceptually reasonable colorization. In addition, we propose a novel saliency map-based guidance method. Branches of the colorization decoder are used to predict the saliency map as a proxy target. Moreover, two hierarchical discriminators are utilized for the generated colorization and saliency map, respectively, in order to strengthen visual perception performance. The proposed system is evaluated on ImageNet validation set. Experimental results show that SCGAN can generate more reasonable colorized images than state-of-the-art techniques.Comment: accepted by IEEE Transactions on Circuits and Systems for Video Technolog
    corecore