5,090 research outputs found

    How AD Can Help Solve Differential-Algebraic Equations

    Get PDF
    A characteristic feature of differential-algebraic equations is that one needs to find derivatives of some of their equations with respect to time, as part of so called index reduction or regularisation, to prepare them for numerical solution. This is often done with the help of a computer algebra system. We show in two significant cases that it can be done efficiently by pure algorithmic differentiation. The first is the Dummy Derivatives method, here we give a mainly theoretical description, with tutorial examples. The second is the solution of a mechanical system directly from its Lagrangian formulation. Here we outline the theory and show several non-trivial examples of using the "Lagrangian facility" of the Nedialkov-Pryce initial-value solver DAETS, namely: a spring-mass-multipendulum system, a prescribed-trajectory control problem, and long-time integration of a model of the outer planets of the solar system, taken from the DETEST testing package for ODE solvers

    Index Reduction for Differential-Algebraic Equations with Mixed Matrices

    Full text link
    Differential-algebraic equations (DAEs) are widely used for modeling of dynamical systems. The difficulty in solving numerically a DAE is measured by its differentiation index. For highly accurate simulation of dynamical systems, it is important to convert high-index DAEs into low-index DAEs. Most of existing simulation software packages for dynamical systems are equipped with an index-reduction algorithm given by Mattsson and S\"{o}derlind. Unfortunately, this algorithm fails if there are numerical cancellations. These numerical cancellations are often caused by accurate constants in structural equations. Distinguishing those accurate constants from generic parameters that represent physical quantities, Murota and Iri introduced the notion of a mixed matrix as a mathematical tool for faithful model description in structural approach to systems analysis. For DAEs described with the use of mixed matrices, efficient algorithms to compute the index have been developed by exploiting matroid theory. This paper presents an index-reduction algorithm for linear DAEs whose coefficient matrices are mixed matrices, i.e., linear DAEs containing physical quantities as parameters. Our algorithm detects numerical cancellations between accurate constants, and transforms a DAE into an equivalent DAE to which Mattsson--S\"{o}derlind's index-reduction algorithm is applicable. Our algorithm is based on the combinatorial relaxation approach, which is a framework to solve a linear algebraic problem by iteratively relaxing it into an efficiently solvable combinatorial optimization problem. The algorithm does not rely on symbolic manipulations but on fast combinatorial algorithms on graphs and matroids. Furthermore, we provide an improved algorithm under an assumption based on dimensional analysis of dynamical systems.Comment: A preliminary version of this paper is to appear in Proceedings of the Eighth SIAM Workshop on Combinatorial Scientific Computing, Bergen, Norway, June 201

    The Exponentially Faster Stick-Slip Dynamics of the Peeling of an Adhesive Tape

    Full text link
    The stick-slip dynamics is considered from the nonlinear differential-algebraic equation (DAE) point of view and the peeling dynamics is shown to be a switching differential index DAE model. In the stick-slip regime with bifurcations, the differential index can be arbitrarily high. The time scale of the peeling velocity, the algebraic variable, in this regime is shown to be exponentially faster compared to the angular velocity of the spool and/or the stretch rate of the tape. A homogenization scheme for the peeling velocity which is characterized by the bifurcations is discussed and is illustrated with numerical examples.Comment: 7 figures, 24 page

    Medical image denoising using convolutional denoising autoencoders

    Full text link
    Image denoising is an important pre-processing step in medical image analysis. Different algorithms have been proposed in past three decades with varying denoising performances. More recently, having outperformed all conventional methods, deep learning based models have shown a great promise. These methods are however limited for requirement of large training sample size and high computational costs. In this paper we show that using small sample size, denoising autoencoders constructed using convolutional layers can be used for efficient denoising of medical images. Heterogeneous images can be combined to boost sample size for increased denoising performance. Simplest of networks can reconstruct images with corruption levels so high that noise and signal are not differentiable to human eye.Comment: To appear: 6 pages, paper to be published at the Fourth Workshop on Data Mining in Biomedical Informatics and Healthcare at ICDM, 201

    Agricultural Policy Adjustments in East Asia: The Korean Rice Economy

    Get PDF
    The processes of agricultural policy decision-making in the East Asian economies of Japan, Taiwan, and Korea are characterized by the complex interactions of competing special interest groups in their respective political arenas. An analytical model is designed to investigate how adjustments in rice price policies are endogenously related to the political economic forces associated with macroeconomic changes. The model is tested against the case of Korean rice price policy, which has not been satisfactorily explained in earlier modeling efforts. A political preference function is used to estimate the relative political weights of producers, consumers, and government over a 25-year period (1961-1985) during which major macroeconomic changes occurred. A simultaneous 12-equation model is then constructed to explore the effects of the macroeconomic changes on the rice pricing decisions through the estimated political weights. Highly significant econometric results are obtained to explain the pattern of increasing political influence of producers relative to that of consumers and government. Simulation experiments show how the patterns in the rice economy are linked to macroeconomic change. The results obtained, thus far, open the way for methodological improvements to further our functional understanding of agricultural policy adjustments in Korea and other East Asian economies.endogenous rice policy, political macroeconomy, political preference function, political weights, econometric simulation, East Asia, Korea, Agricultural and Food Policy, Crop Production/Industries,

    Differential-Algebraic Equations and Beyond: From Smooth to Nonsmooth Constrained Dynamical Systems

    Get PDF
    The present article presents a summarizing view at differential-algebraic equations (DAEs) and analyzes how new application fields and corresponding mathematical models lead to innovations both in theory and in numerical analysis for this problem class. Recent numerical methods for nonsmooth dynamical systems subject to unilateral contact and friction illustrate the topicality of this development.Comment: Preprint of Book Chapte

    Constraint-consistent Runge-Kutta methods for one-dimensional incompressible multiphase flow

    Get PDF
    New time integration methods are proposed for simulating incompressible multiphase flow in pipelines described by the one-dimensional two-fluid model. The methodology is based on 'half-explicit' Runge-Kutta methods, being explicit for the mass and momentum equations and implicit for the volume constraint. These half-explicit methods are constraint-consistent, i.e., they satisfy the hidden constraints of the two-fluid model, namely the volumetric flow (incompressibility) constraint and the Poisson equation for the pressure. A novel analysis shows that these hidden constraints are present in the continuous, semi-discrete, and fully discrete equations. Next to constraint-consistency, the new methods are conservative: the original mass and momentum equations are solved, and the proper shock conditions are satisfied; efficient: the implicit constraint is rewritten into a pressure Poisson equation, and the time step for the explicit part is restricted by a CFL condition based on the convective wave speeds; and accurate: achieving high order temporal accuracy for all solution components (masses, velocities, and pressure). High-order accuracy is obtained by constructing a new third order Runge-Kutta method that satisfies the additional order conditions arising from the presence of the constraint in combination with time-dependent boundary conditions. Two test cases (Kelvin-Helmholtz instabilities in a pipeline and liquid sloshing in a cylindrical tank) show that for time-independent boundary conditions the half-explicit formulation with a classic fourth-order Runge-Kutta method accurately integrates the two-fluid model equations in time while preserving all constraints. A third test case (ramp-up of gas production in a multiphase pipeline) shows that our new third order method is preferred for cases featuring time-dependent boundary conditions
    corecore