402 research outputs found

    A Comparative Study of an Asymptotic Preserving Scheme and Unified Gas-kinetic Scheme in Continuum Flow Limit

    Full text link
    Asymptotic preserving (AP) schemes are targeting to simulate both continuum and rarefied flows. Many AP schemes have been developed and are capable of capturing the Euler limit in the continuum regime. However, to get accurate Navier-Stokes solutions is still challenging for many AP schemes. In order to distinguish the numerical effects of different AP schemes on the simulation results in the continuum flow limit, an implicit-explicit (IMEX) AP scheme and the unified gas kinetic scheme (UGKS) based on Bhatnagar-Gross-Krook (BGk) kinetic equation will be applied in the flow simulation in both transition and continuum flow regimes. As a benchmark test case, the lid-driven cavity flow is used for the comparison of these two AP schemes. The numerical results show that the UGKS captures the viscous solution accurately. The velocity profiles are very close to the classical benchmark solutions. However, the IMEX AP scheme seems have difficulty to get these solutions. Based on the analysis and the numerical experiments, it is realized that the dissipation of AP schemes in continuum limit is closely related to the numerical treatment of collision and transport of the kinetic equation. Numerically it becomes necessary to couple the convection and collision terms in both flux evaluation at a cell interface and the collision source term treatment inside each control volume

    An Asymptotic Preserving Scheme for the ES-BGK model

    Full text link
    In this paper, we study a time discrete scheme for the initial value problem of the ES-BGK kinetic equation. Numerically solving these equations are challenging due to the nonlinear stiff collision (source) terms induced by small mean free or relaxation time. We study an implicit-explicit (IMEX) time discretization in which the convection is explicit while the relaxation term is implicit to overcome the stiffness. We first show how the implicit relaxation can be solved explicitly, and then prove asymptotically that this time discretization drives the density distribution toward the local Maxwellian when the mean free time goes to zero while the numerical time step is held fixed. This naturally imposes an asymptotic-preserving scheme in the Euler limit. The scheme so designed does not need any nonlinear iterative solver for the implicit relaxation term. Moreover, it can capture the macroscopic fluid dynamic (Euler) limit even if the small scale determined by the Knudsen number is not numerically resolved. We also show that it is consistent to the compressible Navier-Stokes equations if the viscosity and heat conductivity are numerically resolved. Several numerical examples, in both one and two space dimensions, are used to demonstrate the desired behavior of this scheme

    Transport coefficients for an inelastic gas around uniform shear flow: Linear stability analysis

    Full text link
    The inelastic Boltzmann equation for a granular gas is applied to spatially inhomogeneous states close to the uniform shear flow. A normal solution is obtained via a Chapman-Enskog-like expansion around a local shear flow distribution. The heat and momentum fluxes are determined to first order in the deviations of the hydrodynamic field gradients from their values in the reference state. The corresponding transport coefficients are determined from a set of coupled linear integral equations which are approximately solved by using a kinetic model of the Boltzmann equation. The main new ingredient in this expansion is that the reference state f(0)f^{(0)} (zeroth-order approximation) retains all the hydrodynamic orders in the shear rate. In addition, since the collisional cooling cannot be compensated locally for viscous heating, the distribution f(0)f^{(0)} depends on time through its dependence on temperature. This means that in general, for a given degree of inelasticity, the complete nonlinear dependence of the transport coefficients on the shear rate requires the analysis of the {\em unsteady} hydrodynamic behavior. To simplify the analysis, the steady state conditions have been considered here in order to perform a linear stability analysis of the hydrodynamic equations with respect to the uniform shear flow state. Conditions for instabilities at long wavelengths are identified and discussed.Comment: 7 figures; previous stability analysis modifie

    Chapman-Enskog expansion about nonequilibrium states: the sheared granular fluid

    Full text link
    The Chapman-Enskog method of solution of kinetic equations, such as the Boltzmann equation, is based on an expansion in gradients of the deviations fo the hydrodynamic fields from a uniform reference state (e.g., local equilibrium). This paper presents an extension of the method so as to allow for expansions about \emph{arbitrary}, far-from equilibrium reference states. The primary result is a set of hydrodynamic equations for studying variations from the arbitrary reference state which, unlike the usual Navier-Stokes hydrodynamics, does not restrict the reference state in any way. The method is illustrated by application to a sheared granular gas which cannot be studied using the usual Navier-Stokes hydrodynamics.Comment: 23 pages, no figures. Submited to PRE Replaced to correct misc. errors Replaced to correct misc. errors, make notation more consistant, extend discussio

    Dynamics of Fluid Mixtures in Nanospaces

    Full text link
    A multicomponent extension of our recent theory of simple fluids [ U.M.B. Marconi and S. Melchionna, Journal of Chemical Physics, 131, 014105 (2009) ] is proposed to describe miscible and immiscible liquid mixtures under inhomogeneous, non steady conditions typical of confined fluid flows. We first derive from a microscopic level the evolution equations of the phase space distribution function of each component in terms of a set of self consistent fields, representing both body forces and viscous forces (forces dependent on the density distributions in the fluid and on the velocity distributions). Secondly, we solve numerically the resulting governing equations by means of the Lattice Boltzmann method whose implementation contains novel features with respect to existing approaches. Our model incorporates hydrodynamic flow, diffusion, surface tension, and the possibility for global and local viscosity variations. We validate our model by studying the bulk viscosity dependence of the mixture on concentration, packing fraction and size ratio. Finally we consider inhomogeneous systems and study the dynamics of mixtures in slits of molecular thickness and relate structural and flow properties.Comment: 16 pages, 8 figure

    Charge transport in nanochannels: a molecular theory

    Full text link
    We introduce a theoretical and numerical method to investigate the flow of charged fluid mixtures under extreme confinement. We model the electrolyte solution as a ternary mixture, comprising two ionic species of opposite charge and a third uncharged component. The microscopic approach is based on kinetic theory and is fully self-consistent. It allows to determine configurational prop- erties, such as layering near the confining walls, and the flow properties. We show that, under appropriate assumptions, the approach reproduces the phenomenological equations used to describe electrokinetic phenomena, without requiring the introduction of constitutive equations to determine the fluxes. Moreover, we model channels of arbitrary shape and nanometric roughness, features that have important repercussions on the transport properties of these systems. Numerical simulations are obtained by solving the evolution dynamics of the one-particle phase- space distributions of each species by means of a Lattice Boltzmann method for flows in straight and wedged channels. Results are presented for the microscopic density, the velocity profiles and for the volumetric and charge flow-rates. Strong departures from electroneutrality are shown to appear at molecular level
    corecore